
 

 

Benefits of Stochastic Computing in Hearing Aid 

Filterbank Design 

Timothy J. Baker, Yiqiu Sun and John P. Hayes 

Department of Electrical Engineering and Computer Science 

University of Michigan 

Ann Arbor, MI, 48109 USA 

{bakertim, sunsusan, jhayes}@umich.edu

Abstract—Designing low-cost filterbanks is important due to 

severe resource limitations imposed by hearing aid size. Here, 

we develop a novel FIR filterbank employing stochastic 

computing (SC). SC-based filters use (pseudo)-random bit-

streams to efficiently perform the core filtering operation. We 

demonstrate that SC is well-suited to low-cost filterbank design 

and compare our SC filterbank to a conventional sequential 

binary (SB) design. We show that the SC design achieves the 

same accuracy and latency as the SB one, with an exceptionally 

large 70% reduction in chip area. The power consumption of 

our proposed SC filterbank is 38-96% that of the SB design. 
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I. INTRODUCTION 

The World Health Organization estimates that 430 million 
people have hearing loss that affects their quality of life [1]. 
Hearing aids provide a key solution to this problem. A major 
component of a hearing aid is a filterbank; see Fig. 1a. The 
filterbank decomposes the input sound into frequency bands 
that are selectively amplified to match a specific pattern of 
hearing loss or audiogram. For example, the audiogram in Fig. 
1b indicates that the patient has severe high frequency hearing 
loss and requires more amplification at the upper end of the 
audio spectrum. 

Filterbanks present many design challenges [2][3]. Not 
only must their frequency response accurately match patient 
audiograms, but they must also meet stringent constraints on 
physical size, response time, and power consumption. Most 
prior work [2][3] aims to reduce the filterbank’s 
computational cost while meeting other hearing aid 
requirements such as low power to enable long battery life [2]. 
One important class of filterbanks is composed of finite 
impulse response (FIR) filters. FIR filters have linear phase 
response which often makes them preferred over alternatives 
like infinite impulse response (IIR) filters. However, FIR 
filters are usually larger than IIR filters and rely on the 
weighted addition operation which involves many costly 
multiplications and complex design trade-offs. The efficient 
implementation of FIR filterbanks using conventional (non-
stochastic) technologies has been studied for decades [2][3]. 

This work explores the role of an unconventional circuit 
technology known as stochastic computing (SC) in filterbank 
design. SC encodes data in randomized bit-streams called  
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Fig. 1. (a) Basic structure of a filterbank for a digital hearing aid.; (b) 

audiogram. Each datapoint in the audiogram indicates the least intense 

(faintest) sound that a patient can hear at the given frequency. 

stochastic numbers [4]. This encoding enables arithmetic 
operations to be implemented with tiny logic circuits, e.g., a 
single AND gate can perform multiplication. Such simple 
elements lead to very low area which makes SC an appealing 
candidate for filterbank design. Further, SC has other 
advantages like high fault tolerance. However, SC has 
relatively low accuracy due to its unusual number 
representation. 

It has been suggested that SC is insufficiently accurate for 
digital filtering [5], but recent work [6][7] and this paper show 
that this is not necessarily the case. And, as we also show here, 
SC’s usual need for costly binary-stochastic data conversion 
circuits is greatly reduced by the sharing of stochastic circuits 
possible among filters in an SC filterbank. 

 The main contributions of this paper are: 

1. The successful application of SC to hearing-aid FIR 
filterbanks leading to a low-cost, accurate and flexible design. 
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Fig. 2. Key SC elements. (a) AND gate acting as an SN multiplier where 

𝜇𝑋 = 𝜇𝑌 = 0.5 and 𝜇𝑍 = 𝜇𝑋𝜇𝑌 = 0.25. (b) Multiplexer (MUX) performing 

scaled addition where 𝜇𝑋 = 0.75, 𝜇𝑌 = 0.5, 𝜇𝑆 = 0.5, and 𝜇𝑍 = 1/2(𝜇𝑋 +
𝜇𝑌) = 0.625. 

2. Cost and performance comparisons of our SC filterbank 
design with a conventional non-stochastic design. 

3. Demonstration of accurate audiogram matching with 
SC FIR filterbanks on a representative audiogram. 

The remainder of this paper is organized as follows. First, 
Sec. II reviews SC FIR filter design basics and prior work. 
Next, Sec. III introduces our SC FIR filterbank design which 
is then evaluated in Sec. IV. Lastly, Sec. V summarizes the 
main contributions and concludes the paper.  

II. BACKGROUND 

First, we review the basics of SC in relation to FIR filter 

design. 

A. Stochastic Computing  

In SC, data is represented by a pseudo-random stream of bits 
called a stochastic number (SN). An SN 𝐗 = 𝑋1𝑋2 … 𝑋𝑁 has 
a defining parameter 𝑃𝑋 = ℙ(𝑋𝑖 = 1) which is the probability 
that an arbitrary bit 𝑋𝑖  of X takes value 1. X’s length N is 
application-dependent; its numeric value 𝜇𝑋 is derived from 
𝑃𝑋  and depends on the SN format used. Generally, the 
accuracy of 𝜇𝑋 improves as N is increased.   

 The two basic formats for SNs are unipolar where 𝜇𝑋 =
𝑃𝑋 , and bipolar where 𝜇𝑋 = 2𝑃𝑋 − 1.  The bipolar format 
allows for negative-valued SNs. For example, with N = 8, SN 
X = 00100001 has an estimated unipolar value of +0.25 and 

bipolar value of −0.5. Scaling can be used to accommodate 
numbers outside the [0,1] and [−1,1] intervals. 

 Representing data probabilistically with SNs leads to 
interesting and computationally efficient arithmetic circuits. 
For instance, consider an AND gate with unipolar SN inputs 
X and Y and output Z. The output bit-stream’s numerical 
value 𝜇𝑍  is 𝑃𝑍 = ℙ(𝑋𝑖 ∧ 𝑌𝑖 = 1)  which, assuming X’s and 
Y’s bits are statistically independent or uncorrelated, yields 
ℙ(𝑋𝑖 = 1)ℙ(𝑌𝑖 = 1) = 𝜇𝑋𝜇𝑌.  Thus, 𝜇𝑍 = 𝜇𝑋𝜇𝑌  implying 
that an AND gate is a unipolar multiplier. 

Fig. 2a illustrates unipolar SC multiplication where inputs X 
and Y with 𝜇𝑋 = 𝜇𝑌 = 0.5 yield output Z with 𝜇𝑍 = 0.25. 
Most SC circuits require uncorrelated SNs but, as we will see 
in Sec. III, correlation can sometimes be exploited to enhance 
SC by introducing new operations or increasing accuracy 
[6][7][8]. 

Addition in SC is scaled since SN values are derived from 
probabilities confined to the [0,1]  interval. To implement 
scaled addition, a simple multiplexer (MUX) can be used, as 
in Fig. 2b. Here, X with value 𝜇𝑋 = 0.75 and Y with 𝜇𝑌 = 
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Fig. 3. Representative SC circuit performing weighted addition. The blocks 

labeled “D” are register delay units (D flip-flops). Stage 1 is a preprocessing 
step that prepares suitable SNs A0 to A3 for weighted addition. Stage 2 

performs weighted addition using a MUX and then estimates the output Y’s 

value using a counter.  

0.5 are being added with the aid of a control SN S with 𝜇𝑆 =
0.5. In this configuration, both X and Y have a 50% chance of 
being selected each clock cycle implying that half of Z’s bits 
are expected to be propagated from X and the rest from Y. 
Consequently, Z’s value is an evenly weighted sum of 𝜇𝑋 and 
𝜇𝑌 , namely, 𝜇𝑍 = 1/2(𝜇𝑋 + 𝜇𝑌) = 0.625. By adjusting 𝜇𝑆, 
other scaled (weighted) sums can be implemented by a mux.  

While encoding data into SNs enables low-cost arithmetic 
processing, generating the input SNs can be costly. A 
stochastic number generator (SNG) is needed to convert an n-
bit binary integer B to an SN X with 𝑃𝑋 = 𝐵/2𝑛. An SNG is 
commonly built around a comparator and a pseudo-random 
number source (RNS) such as a linear feedback shift register 
(LFSR) [4]. SC designs may need large numbers of SNGs, 
which make them a major contributor to overall hardware 
cost. In this work, we follow the recent preference for low-
discrepancy SNGs, which typically lead to more accurate 
outputs than LFSRs [9]. 

B. SC FIR Filter Design 

An M-tap FIR filter implements the operation 

 𝑦𝑡 = ∑ ℎ𝑖𝑥𝑡−𝑖
𝑀−1
𝑖=0   () 

where the {ℎ𝑖}  are the constant filter coefficients, 𝑥𝑡  is the 
input signal, e.g., a digitized audio stream, and 𝑦𝑡  is the 
filtered output signal. The {ℎ𝑖}  are the key filter design 
parameters and are computed from the filter’s frequency 
response specification with the aid of software tools like 
MATLAB. Filters with more taps are larger, slower and more 
costly, but tend to do better filtering. Unlike conventional 
filters, SC-based FIR filters have been the topic of only a few 
studies such as [5][7][10][11]. The SC approach we present 
here is novel in that it applies is recent correlation-based 
accuracy optimizations suggested in [6][7] to digital 
filterbanks. 

 SC FIR filters are best explained with an example. Fig. 3 
shows a 4-tap SC FIR filter that operates as follows. First, 
SNGs convert the four inputs {𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, 𝑥𝑡−3} to bipolar 
SNs X0 to X3 where the SN values are set to 𝜇𝑋𝑖

= 𝑥𝑡−𝑖. Then, 

if ℎ𝑖 is negative, Xi is negated by the inverter array, otherwise 
Xi is left unchanged. Because inverting a bipolar SN flips the 
sign of the SN’s value, this step accounts for the sign of ℎ𝑖.  



 

 

 
Fig. 4. Frequency response of our proposed 12-bit precision SC filterbank. 

As in [3], the subbands are spaced non-uniformly over the 0 to 8,000 Hz 

audio spectrum.The noise at the bottom is due to many stopband frequencies. 

Consequently, the inverter array’s output is A0 to A3 with 
𝜇𝐴𝑖

= sign(ℎ𝑖)𝑥𝑡−𝑖 . Finally, a 4-input mux whose select 

inputs’ values are determined by the |ℎ𝑖|’s performs scaled 
weighted addition on A0 to A3. The mux’s output is Y with 

 𝜇𝑌 =
1

∑ |ℎ𝑖|𝑀−1
𝑖=0

∑ |ℎ𝑖|𝜇𝐴𝑖

𝑀−1
𝑖=0 =

1

∑ |ℎ𝑖|𝑀−1
𝑖=0

∑ ℎ𝑖𝑥𝑡−𝑖
𝑀−1
𝑖=0  () 

the latter being a suitably scaled version of the FIR filtering 
equation (1). The scale factor 1/∑|ℎ𝑖| denotes a gain which is 
accounted for later during audiogram matching. It is needed 
since the output SN Y’s value is confined to the [−1,1] 
interval. 

After addition, the output SN Y must be converted back to 
a conventional binary number. Since Y is a bipolar SN, an up-
down counter is used which increments when bit-stream Y 
outputs a 1 bit and decrements when Y outputs a 0. The 
counter’s output is �̂�𝑌, an estimate of Y’s value 𝜇𝑌 = 2𝑃𝑌 −
1. The difference between the estimated output value �̂�𝑌 and 
exact output value 𝜇𝑌 is the error of the stochastic circuit. SC 
errors fluctuate randomly and typically diminish with longer 
SNs. Thus, there is a fundamental accuracy-latency trade-off 
in SC.  

III. STOCHASTIC COMPUTING FILTERBANK  

Here, we first give the specifications of our non-uniform 
filterbank. We then describe its proposed SC design. 

A. Filterbank Specification 

We consider a high-performance 16-channel FIR filterbank 

like that of [3] whose frequency response (Fig. 4) is based on 

the Bark scale [12]. Each of the 16 filters has 119 taps and the 

coefficients are determined using MATLAB. The filterbank’s 

nonuniform subband spacing has the advantage of matching 

characteristics of human hearing, such as the fact that humans 

can differentiate low frequency sounds better than high 

frequency sounds [12]. Note there is little consensus on the 

best spacing of the subbands, and the proposed SC design can 

be flexibly applied to other subband spacings such as 

symmetric spacing [2]. 

B. Stochastic Computing Filterbank Design 

Fig. 5 shows our proposed SC filterbank. The input logic for 

SN generation (which normally accounts for 90% of each  
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Fig. 5. Proposed SC filterbank structure. The 16 filters share Stage 1 

containing SNGs and the inverter array, while each filter has its own Stage 2 
containing an SN MUX weighted adder and counter. The filterbank core 

comprises all components except the memory block. 

filter’s area) is referred to as Stage 1 and is shared amongst 

all 16 filters thus saving considerable area and power. As seen 

in Fig. 5, the filters’ processing and output logic called Stage 

2 is not shared but is tailored to each filter’s individual 

coefficients. 

Prior studies on SC filters have suggested that extremely 

long bit-streams are needed to achieve satisfactory accuracy 

[5][13]. To combat this, our proposed filterbank design is 

based on correlation-enhanced multiplexer (CeMux) filters 

[7] which apply accuracy-enhancing correlation-changing 

techniques from [6] to SC filters. These techniques center 

around correlating the input SNs during generation as shown 

in Fig. 6. Here, each SNG shares an RNS which leads to high 

correlation in the generated SNs. 

Normally, such correlation would degrade an SC circuit’s 

accuracy because input correlation biases the output SN’s 

value [8]. However, for mux-based circuits, correlation 

amongst the input SNs reduces random fluctuations in the 

output SN without biasing its value, thus improving accuracy 

[6][7]. Like CeMux filters, our filterbank design also employs  

a low discrepancy sequence generator as the shared (pseudo) 

RNS which improves accuracy over using other RNSs [9]. 

Combined, these design features greatly enhance the 

filterbank’s accuracy. 

Besides exploiting correlation, our filterbank differs 

significantly from the few previously proposed SC 

filterbanks [10][13]. The design in [10] implements only the 

multiplications in (2) using SC, whereas our design performs 

both multiplication and addition with SC, thus achieving 

much lower area. In [13], the authors propose an infinite 

impulse response (IIR) filterbank for use in auditory 

processing. FIR filters have desirable features that IIR filters 

lack, notably linear phase response. Our SC FIR filterbank is 

most similar conceptually to the non-SC design in [3] where 

a shared pre-computational unit similar in function to our 

shared Stage 1, is used to reduce the computational cost. 

IV. DESIGN EVALUATION 

In this section, we compare our SC filterbank design to a 
representative non-stochastic “sequential binary” (SB) design. 
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Fig. 6. Details of shared Stage 1 (Fig. 5). Outputs 𝐗𝑖
+ are routed to filters 

where coefficient ℎ𝑖 > 0 while outputs 𝐗𝑖
− are routed to filters where ℎ𝑖 <

0. The comparators are core components of SNGs and the shaded n-bit 

inverter ensures that all outputs 𝐗0
+, … , 𝐗118

+ , 𝐗0
−, … , 𝐗118

−   are maximally 

correlated to improve accuracy. 

A. Design Goals and Assumptions 

Our main design and evaluation tools are widely used with 
non-stochastic digital systems: MATLAB for filter design, 
Synopsys Design Compiler for logic design, timing, and 
power analysis, as well as the open-source NanGate 45nm 
standard cell library for area and power estimation and layout 
synthesis. Our ability to directly compare with previously 
proposed filterbank designs [2][3] is severely limited by big 
differences in the chip technologies used, some of which are 
proprietary. 

The SC filterbank realizes the design described in Sec. III, 
while the SB filterbank is a sequential implementation of an 
FIR filter that uses standard optimizations like the exploitation 
of symmetric coefficients, as in [3]. Each filterbank contains 
16 filters (subbands) that implement the FIR filter operation 
(1) and have the overall passband/stopband frequency 
response illustrated by Fig. 4. Stopband attenuation is a key 
filter performance metric; generally, the higher the better. 

Each design operates in real time and processes one audio 
sample every 0.0625 ms, corresponding to a sampling 
frequency of 16 kHz. The area, power and stopband 
attenuation of the SC and SB designs are determined by the 
precision (word length) 𝑛 of each design. Here, 𝑛 is varied 
from 8 to 12 bits. The SN length N is set to 2𝑛+2 bits which is 
the shortest length that ensures that the SC filterbank’s 
stopband attenuation is at least as high as the corresponding 
SB design’s stopband attenuation. N is made a power-of-two 
to maximize hardware efficiency.  

B. Experimental Results 

As in prior studies like [3], our results apply to the 
filterbank’s “core” and do not include the memory cost 
associated with storing past audio samples (see also Fig. 5). 
The memory would likely be implemented with a dual port 
RAM [3] and would be roughly the same size for both the SC 
and SB designs. Instead, we focus on where the two designs 
differ to highlight the computational performance and cost of 
the SC filterbank. Table I summarizes our experimental 
results, with accuracy represented by the lowest stopband 
attenuation of the 16 bands. 

  

TABLE I.  FILTERBANK DESIGN COSTS 

 Proposed (SC) Conventional (SB) 

Precision 

(bits) 

Stopband 

attenuation 

(dB) 

Area 

(𝝁𝒎𝟐) 

Power 

(𝝁W) 

Stopband 

attenuatio

n (dB) 

Area 

(𝝁𝒎𝟐) 

Power 

(𝝁W) 

8 27.1 7,928 220 25.0 28,255 631 

9 30.7 9,538 287 28.5 34,473 854 

10 37.4 10,978 440 33.7 41,055 1,020 

11 42.9 12,515 655 40.2 44,973 1,107 

12 47.0 14,037 1,161 46.1 49,414 1,206 

 

 One major conclusion is that SC can meet the accuracy 
requirements of hearing aid filterbanks with much shorter bit-
streams than previously reported. In [5], it was concluded that 
SNs of length 22𝑛+1 are required for an SC filter to achieve 
the same performance as a precision-level 𝑛 SB design, where 
n is the binary word length. In contrast, here we show that with 
 2𝑛+2-bit SNs, the SC filters in our filterbank achieve similar 
performance to conventional n-bit SB filters. This significant 
decrease in required bit-stream length is due to the correlation 
techniques employed in the SC filters and the use of the low 
discrepancy RNS. Ultimately, both the SC and SB filterbanks 
can meet essentially the same frequency response targets in 
terms of filter order, subband spacing, and stopband 
attenuation, as represented by Fig. 4 and Table I. 

The accuracy of the SC filterbank is further indicated by 
its ability to match a patient’s audiogram, which reflects such 
factors such as subband spacing, number of subbands, and 
stopband attenuation. Fig. 7 demonstrates this for the 12-bit 
SC filterbank using a representative member of a standard 
audiogram set [14]. The maximum matching error (MME) is 
0.85 dB. Note that the normal target for MME is 3 dB or less 
[2] which, as in this example, is fully met by the SC design. 

A second major conclusion is that the SC design’s area is 
consistently 70% lower than that of the SB design. This great 
area efficiency is mainly due to the SC filterbank’s use of 
cheap but accurate MUX-based weighted adders in place of 
costly conventional multipliers and adders. Importantly, the 
low area is also due to our proposed sharing of SN generators 
illustrated in Fig. 5. If the SNGs were not shared, the area of 
the SC design would be significantly higher. 

Table 1 reveals that the SC filterbank’s power 
consumption, is 38-96% that of the SB design for n < 12. 
However, power consumption grows steadily with the 
precision 𝑛 due to the increase in SN length 𝑁 = 2𝑛+2. The 
SC filterbank is always configured to process one audio 
sample every 0.0625 ms, so longer SNs require a faster digital 
clock, and therefore more power, to meet this constraint. The 
SB design’s power grows more slowly with precision because 
its power dissipation is only due to increasing circuit area. It 
is unusual for an SC design to have similar power dissipation 
to a conventional design, but it occurs here because both 
designs are constrained to operate in real time with a latency 
of 0.0625 ms. Hence, a potential limitation of SC filterbank 
design is that the power consumption will continue to grow if 
SN length is further increased when more accurate outputs are 
desired. 

There are several possibilities for improving the power 
efficiency of the SC filterbank. First, since each SN bit is  



 

 

 
Fig. 7. Audiogram matching results for 12-bit precision SC filterbank.  

equally weighted, SC circuits are very resilient to bit-flip 
errors, so techniques like voltage overscaling could be 
employed to reduce power consumption [15]. Alternatively, 
techniques like dynamic scaling [13] could increase the SC 
filterbank’s accuracy for a given bit-stream length. Finally, 
some authors have proposed using analog memory with SC 
circuits to greatly mitigate the area and energy cost of memory 
and SNGs in SC systems [16]. These power-saving 
possibilities are worthy of further study due to the huge area 
savings offered by the SC approach to filterbank design. 

V. CONCLUSION 

In this work, we successfully applied SC to the design of 

hearing aid filterbanks. SC is unique in its reliance on 

stochastic bit-stream number representation. We found that 

the proposed SC design has 70% lower area than 

conventional SB design, while achieving comparable 

accuracy and the same latency. The SC filterbank’s power is 

also much lower than the SB design’s power for lower 

precision levels. Further, our proposed SC design is flexible 

in that changing the subband number and spacing does not 

significantly change the design’s cost. Overall, we find that 

SC is an exciting and promising new direction for hearing aid 

filterbank design. 
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