2026 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

The Memory Processing Unit:
A Generalized Interface for
End-to-End In-Memory Execution

Yiqiu Sunf
James A. Bain?

Minh S. Q. Truong*
Abraham Farrellt

TUniversity of Illinois Urbana-Champaign

Abstract—The processing-using-memory (PUM; ak.a. in-
memory computing) paradigm aims to eliminate data movement
energy and performance costs by using memory cell interactions
to directly perform computation. Given PUM’s potential for large
savings, prior works have proposed many different datapath
microarchitectures to demonstrate how general-purpose PUM
benefits a wide range of application kernels. Unfortunately, these
efforts largely depend on microarchitecture-specific vector-like
interfaces that (1) force many of an application’s operations
to be offloaded to a CPU, (2) require significant programmer
effort to scale up applications to an entire memory chip, and
(3) make it impractical to develop badly-needed systems software
and programming tools for PUM.

To address these three issues, we propose the memory processing
unit (MPU), a microarchitecture-agnostic interface layer for
general-purpose PUM with three components. First, we develop
an MPU instruction set architecture (ISA) with instructions to
facilitate application scaling and task coordination. Second, we
propose an ensemble execution model that coordinates execution
across millions of PUM vector function units and maps to most
general-purpose PUM microarchitectures. Third, we design a
comprehensive MPU control path that efficiently executes MPU
ISA binaries across multiple ensembles, and can enable CPU-free
execution of complex end-to-end applications with PUM. We
demonstrate how the MPU maps to multiple previously-proposed
PUM datapaths, and how it achieves average performance/energy
improvements of 1.79x/3.23x for 21 data-intensive kernels over
these prior works (67x/47x vs. a modern GPU), while also
achieving performance and energy improvements for the complex
end-to-end applications.

I. INTRODUCTION

In the last decade, there has been a surge in the number of
data-centric application domains that perform data generation
and/or analytics. These applications generate a large amount of
data movement between compute elements (e.g., CPUs, GPUs)
and data stores (e.g., caches, off-chip main memory, storage),
with the movement often dominating overall performance and
energy usage [20, 23, 25, 36, 51, 77]. As a result, significant
academic and commercial effort has been placed on moving
computation closer to these data stores [1, 20, 26, 36-38, 43,
50, 55, 60, 63, 65, 66, 73, 83, 84, 99].

Processing-using-memory (PUM; a.k.a. in-memory comput-
ing or IMC) [36, 88] aims to eliminate unnecessary data
movement costs by using electrical interactions between
memory cells to perform computation without the need for
discrete CMOS logic units. (A memory cell is a small device
that holds one or more bits of data, depending on the specific

Dawei XiongT

Alexander Glass*
Saugata Ghose!

Amol Shahf
L. Richard Calrleyi

fCarnegie Mellon University

memory technology.) PUM takes advantage of the data-parallel
nature of many modern applications by performing operations
across entire columns (or rows) of data in a memory cell array
at once, significantly increasing throughput to compensate for
higher latencies. Across the dozens to thousands of cells per
column/row in an array, and across dozens to thousands of
arrays in a chip, PUM has the potential to perform millions of
parallel operations each cycle, without invoking any memory
I/O. As a result, PUM can reduce the total energy needed for
computation by orders of magnitude.

The promised throughput and energy savings potential has
led to the proposal of many different PUM datapaths in
recent years. Researchers have shown how PUM datapaths
can be constructed from arrays of conventional memories (e.g.,
DRAM [34, 35, 40, 69, 87], SRAM [2, 28, 31, 48], flash
memory [3, 15, 33, 80]) as well as from emerging resistive
memories (e.g., PCM [22, 52, 62, 70], MRAM [6-9, 47, 68,
71], ReRAM/memristors [10, 10, 19, 24, 24, 32, 39, 41, 42,
45, 57-59, 67, 81, 89, 89, 91, 91, 97, 98, 101-104], domain-
wall/racetrack [79]). To enable computation, these datapaths are
tightly integrated with the underlying memory technology. For
example, DRAM-based PUM datapaths make use of triple-row
activation to combine capacitive charge across multiple rows,
while ReRAM-based PUM datapaths take advantage of state-
dependent voltage divisions among memory cells connected in
series to perform logical operations.

However, these PUM datapaths can achieve their theoretical
throughput and energy savings only under fairly restrictive
constraints that most real applications are unable to achieve in
practice. First, applications must have enough data-level paral-
lelism for dependency-free thousand-to-million way parallelism.
Many data-centric applications do not have such amounts of
parallelism available to exploit, but PUM datapaths are typically
designed for only fixed, large degrees of parallelism. Second,
applications must be able to perform PUM operations entirely
within a single array. Most PUM architectures have only limited
capabilities of migrating data between arrays, and poor inter-
array interfaces make communication difficult to implement at
scale. Third, applications should avoid operations that are not
currently possible to perform in memory. The vast majority
of modern applications combine data-parallel kernels with
interstitial code, often scalar or with limited parallelism, to

perform essential operations such as data-driven control flow.
PUM is often incapable of performing scalar operations or
sophisticated control flow, causing existing datapaths to rely on
an off-chip host CPU to perform these (frequent) operations.
From a simplistic study that we perform (Figure 1), even if
only one in 80 instructions requires the CPU, this slows down
the program by 10.1x, vs. a hypothetical PUM capable of
executing without CPU assistance. For typical programs, we
estimate that slowdown to be on the order of 30—40x.

18k

16k
14k
12k
10k
8k
6k
2k
0

Loop Body Size (#

Hypothetical
|:| Loop Body Exec.

. Exit Evaluation
Off-Chip Ctrl.
|:| Loop Body Exec.
[oft-Chip Transfer
. Exit Evaluation

(cycles)

Runtime
oy
~

mstructlons) [Oepru

Fig. 1. Simplistic study showing a breakdown of dynamic loop execution time
for RACER [97, 98] as the number of loop body instructions (back-to-back
CMPEQ: compare equality) increases.

As a result, PUM prototypes have currently been limited to
accelerating matrix—vector multiplication (MVM) for machine
learning (ML) inference [37, 38, 52, 62], as ML models are
able to satisfy the above conditions. Unfortunately, this leaves
behind the many classes of applications (e.g., graph analysis,
databases, genomics, edge analytics, extended reality) that could
benefit from bitwise PUM (i.e., PUM that performs Boolean-
complete logic [39, 57, 98]) were it not for these constraints.
Our goal is to design low-cost control logic that can eliminate
these constraints for most bitwise PUM datapaths.

To this end, we propose the memory processing unit (MPU),
a technology-agnostic front end for PUM datapaths. We set
three design goals for the MPU:

1) Support end-to-end application execution. We want to
eliminate PUM datapath dependency on the host CPU, so
the MPU needs to support common operations such as
scalar computing and data-driven control flow.

2) Present an easy-to-program abstraction of hardware.
Today, PUM datapaths either require the programmer to
possess expert knowledge of the hardware design, or present
a simple vector register interface that does not work well
for control flow operations or inter-array communication.
We want an interface that seems familiar to existing pro-
gramming paradigms, while simplifying how programmers
expose different forms of parallelism to the hardware.

3) Work with most PUM datapaths. If done correctly, the
MPU can enable development of a software stack for PUM,
which has been a substantial need for several years. Because
existing interfaces are specialized to datapath microarchi-
tectures and memory technologies, systems developers are
hesitant to expend significant effort building a stack for
a datapath with no guaranteed future. We want a front
end with a consistent hardware-agnostic interface, which
can plug into most bitwise PUM datapaths while enabling
cross-datapath stack portability and future-proofing.

To achieve these design goals simultaneously, we couple
a flexible multi-layer MPU abstraction with a compatible
microarchitectural implementation of MPU control path logic.

As Figure 2 shows, our abstraction builds upon the vector
interface exposed by many popular bitwise PUM datapaths,
which maps memory arrays to multiple vector register files
(VRFs). In many, but not all, datapaths, not all VRFs can be
activated simultaneously due to specific hardware constraints,
so we introduce the RF holder (RFH) to group together VRFs
that share physical constraints (e.g., thermal activation limits,
local communication networks). Our MPU runtime dynamically
ensures that RFH constraints are always enforced. To support
task-parallel programming, we introduce the ensemble execu-
tion model. An ensemble is a programmer-defined collection of
VRFs that will execute the same operations in a kernel. VRFs
can be added to an ensemble by a programmer without any
concern for hardware constraints or physical location, with the
runtime handling task dispatching and scheduling. We demon-
strate how (1) this abstraction can be mapped to three very
different datapaths (DRAM-based MIMDRAM [78], ReRAM-
based RACER [97, 98], SRAM-based Duality Cache [31]);
and (2) programmers can significantly simplify how they write
PUM programs by using the abstraction, as exemplified with
ezpim, our advanced assembler.

....... MPU Abstraction......, MPU Control Path ezpim Code
Ensemble 1 0 .Ensme ;
....... i : [Instruction Precoder H- Define Ensmb. 1
RFH 1fRFH 2fRFH 3 JRFH A [, X Ensmb. 1 Instrs
£l 3 Data ‘ :
VRF 1VRF 1[VRF 1t #VRF 1]
l H l : Compute Transfer Define Ensmb. 2
VRF 2| [VRF 2] IVRF 2Jt« qVRE2]| | [Controller O] |Controller| | | Ensmb. 2 Instrs.
[VRF V][VRF V] IVRF v| [vrrY]

Fig. 2. MPU overview. A VRF corresponds to one or more memory arrays.

To enable the effective execution of programs based on this
abstraction, we design the complete microarchitecture of a
control path for the MPU, which we synthesize in a 15nm
CMOS technology. This control path (1) translates universal
MPU instructions into datapath-specific micro-ops, (2) manages
the hardware state of concurrent tasks as they execute on the
MPU, (3) supports arbitrarily-nested data-driven control flow
through the introduction of a novel SIMD gating mechanism
in memory, and (4) enables message passing communications
with other MPUs. Table I shows the capabilities of the MPU,
compared to CPUs, GPUs, and four state-of-the-art PUM
datapaths: Liquid Silicon (LS) [103], Duality Cache [31] (DC),
MIMDRAM (MD) [78], and RACER (RC) [97, 98].

We evaluate the MPU across 21 data-intensive kernels
for three PUM microarchitectures, and find that it improves
performance and energy over their existing designs. As an
example, the MPU improves RACER’s performance and
energy usage by an average of 1.79x and 3.23 X, respectively
(5.6x/11.3x for kernels with data-driven control flow), with
improvements of 67x/47x vs. an NVIDIA GeForce RTX 4090
GPU. To demonstrate the potential of the MPU, we also show
how it enables multiple microarchitectures to execute three end-

TABLE I
MPU FEATURES VS. PRIOR PUM DATAPATHS, CPUS, AND GPUS

O: not supported; @: supported; ©: partially/potentially supported
LS DC MD RC CPU GPU MPU

Complex Control Instructions

Supported Features

if-else statements O 0O O 06 o6 o o

Dynamic loops OO0 O O e e e

Subroutine calls OO0 @ O e e []

Global synchronization ©C e O 0O o o [
System-Level Abilities

Collective communication O © © 0 & © []

Power-density-aware scheduling © O O O O O [J

Runtime micro-op decoding OO0 @ 6 06 © e

to-end applications, with significant gains over both existing
PUM datapaths and the RTX 4090.
We make the following contributions in this paper:

e We propose the MPU front end, which can enable end-to-end
application execution across a wide range of digital PUM
datapaths and alleviate programming burden at scale.

e We introduce new PUM hardware abstractions that encapsu-
late scheduling limits and non-contiguous parallel execution.

e We demonstrate how the MPU enables essential systems
software such as parallel task coordination, a templated
PUM assembler, and thermal-aware task scheduling.

II. BACKGROUND
A. Existing Execution Models

An execution model is a critical part of a computing plat-
form’s ISA. The model describes at a high level the hardware
components and their runtime behaviors when executing an ap-
plication. Traditional CPUs make use of what we call a thread-
centric execution model, which maps threads that execute
independent streams of instructions across components such
as functional units, register files, and caches. As a comparison,
GPUs make use of a warp-centric (SIMT) execution model,
which can exploit both thread-level parallelism and data-level
parallelism by grouping multiple threads into a warp, and
managing resources and execution state at a warp granularity.
The warp-centric execution model scales more efficiently across
the thousands of concurrent threads executing in a GPU, and
enables new techniques such as memory coalescing, lockstep
execution, and warp scheduling to hide long-latency stalls.

B. Enabling Bitwise PUM Micro-Ops

PUM-enabling memory technologies rely on similar mech-
anisms to realize column-wide logic in-situ, by applying
technology-specific voltage values to different columns of a
memory array. While the basic mechanism is the same across
most technologies (turn on multiple columns or rows, and
induce an operation) and can be performed using conventional
(e.g., SRAM, DRAM, NAND flash) or emerging (e.g., ReRAM,
MRAM, PCM) memory technologies, the specific enabling
voltages, interactions (e.g., resistance ladders in crossbars vs.

charge sharing in DRAM), and resulting micro-ops (e.g., NOR,
AND, OR, NOT, IMPLY, XOR) differ from one memory technology
to another [54, 87]. We briefly describe how PUM can be
performed in SRAM, DRAM, and ReRAM, as these are the
underlying technologies of the three datapath microarchitectures
that we explore in this work.

For SRAM and DRAM, PUM logic can perform bitline
computation using multiple-row activation [49, 87]. Using
DRAM as an example, the memory is organized into two-
dimensional arrays, where cells in an array are activated one
row at a time. Each cell stores charge representing one bit of
data, and shares a bitline with cells in the same column in
other rows (but not cells in the same row). When a DRAM
cell is activated, its stored charge perturbs a preset voltage on
the bitline (which is precharged, i.e., initialized, to half of the
base voltage Vpp), and the slight shift up or down is detected
by the bitline’s sense amplifier, which amplifies the shift to a
full Vpp or GND voltage, respectively. If three DRAM cells
sharing a bitline are simultaneously activated (which DRAM
PUM architectures perform using a triple-row activate, or TRA,
micro-op), all three cells share their charge with the bitline, and
the shift detected by the sense amplifier becomes a majority vote
among the three cells. If one of these cells is preset to bit value
0, then the majority vote represents an AND operation between
the other two cells. If one of these cells is preset to bit value 1,
then the majority vote represents an OR operation between the
other two cells. SRAM- and DRAM-based PUM architectures
typically augment basic bitline computing with additional wires,
CMOS modules, and/or specialized cells to enable additional
micro-ops [2, 31, 40, 78, 87] (e.g., adding dual-contact cells
to enable NOT for Ambit-based DRAM PUM [87]).

In contrast, emerging memory devices such as ReRAM are
often organized into crossbars (Figure 3a), which allows for
current to flow from multiple columns into the same row line
(i.e., wire). Figure 3b shows how ReRAM can perform a NOR
micro-op on an entire column of operands. For each row, by
applying a voltage V,,, on two input cells and grounding the
output cell, a current is induced that flows from V,,,, to ground,
changing the output cell’s value based on the NOR of the bits
in the two input cells.

(2 (b)

Fig. 3. (a) ReRAM crossbars with memory devices at intersection of wires;
(b) asserting specific voltages to perform a NOR micro-op.

C. Bitwise PUM Datapath Microarchitectures

Bitwise PUM datapaths aggregate basic PUM micro-ops
into more complex CPU-like instructions. While the datapaths
differ significantly [54], they typically share two common traits:
(1) they make use of bit-serial computation [14], and (2) they
map columns (or rows) of each memory array to a vector
register and organize these registers into one or more vector

register files (VRFs). Since bit-serial computation results in
long instruction latencies, bitwise PUM datapaths make use of
vectorization to compute across many operands in parallel. For
motivation, we briefly discuss the design of two state-of-the-art
bitwise PUM datapaths.

MIMDRAM. A DRAM chip is split up into multiple subarrays
that each consist of multiple mats (i.e., small memory arrays).
MIMDRAM [78] executes instructions on data stored within a
mat, where all data bits of a vector register are mapped to a
single mat. As shown in Figure 4b in Section IV, a subarray
contains multiple pyProgram processing engines (uPEs) that
can execute a stream of vector instructions across adjacent
DRAM mats. An active yPE issues an instruction (a bbop
in MIMDRAM terminology) to the mats assigned to that
uPEs. The bbop is broken down into triple-row activate (TRA)
operations (MIMDRAM micro-ops), which simultaneously turn
on multiple rows in the mat to share charge and perform a
Boolean logic operation (e.g., AND, OR, NOT). The TRAs are
issued to corresponding mats using a scoreboard scheduler.

RACER. RACER [97, 98] extends bit-serial vector computing
into a bit-pipelined execution model, as shown in Figure 4a.
Each n-bit operand in a vector register is striped by bit position
across n different ReRAM memory ftiles (e.g., tile O holds
bit 0, tile 1 holds bit 1). As a result, one vector register spans
n columns in n different tiles. Tiles belonging to the same
vector registers are grouped into a RACER pipeline, and are
interconnected using single-column buffers that act like pipeline
registers. As a result, RACER can perform vector micro-ops
(e.g., NOR) on bit O in tile O, pass a carry-out value to tile 1, and
operate on bit 1 while allowing tile O to work on a completely
separate stream of micro-ops. Because bit-serial operations are
often repeated for each bit, RACER contains pipeline control
circuitry (PCC) that passes micro-ops from one tile to the next
in a pipeline.

III. MEMORY PROCESSING UNIT: OVERVIEW

Today, each bitwise PUM datapath provides its own unique
view of the hardware to the programmer. These views simulta-
neously (1) force programmers and system software to highly
specialize binaries to the underlying datapath microarchitecture
(e.g., knowing which memory arrays are physically co-located
in a chip, fixing the width of vector instructions), prevent-
ing program and toolchain reuse across different datapaths;
and (2) significantly restrict the datapaths to supporting the
execution of only a limited number of kernels (e.g., highly
parallel kernels with little to no control flow divergence).
The first issue has hindered any meaningful development of
sophisticated software development toolchains. The second
issue has forced most end-to-end PUM-friendly applications to
repeatedly alternate their execution between in-PUM kernels
and short host CPU segments that perform control flow
evaluation.

We introduce the memory processing unit (MPU; see
Figure 2), a new front-end layer for bitwise PUM that, with
careful design and flexibility, solves both issues. The MPU
consists of a lightweight runtime to manage execution state

across an entire memory chip, along with modest hardware
support to improve the efficiency of the runtime and abstraction.
The MPU makes four key decisions about the programmer—
datapath interface, building upon a low-level mapping of vector
register files (VRFs) to physical memory arrays.

First, we want programmers to be able to express flexible
degrees of parallelism in their code. While existing PUM
datapaths expose their underlying memory cells as vector
registers, they currently force programmers to write individual
vector instructions for each pair of vector registers, with
no support for vector lane masking. Given that the vector
width in PUM ranges from dozens to thousands of lanes,
while data-level parallelism is rarely of a constant width in
real programs, this makes programming complex: for small
widths, programmers must manually repeat vector instructions
many times in the code; for large widths, they will need to
pad data (often to different degrees for separate instructions),
wasting PUM data capacity and throughput. To avoid this, the
MPU introduces (1) the ensemble execution model, where a
programmer can dynamically regroup memory arrays at any
point in a program, based on the application’s actual needs;
and (2) hardware/software support for efficient lane masking.
Essentially, an ensemble is a programmer’s way of telling the
MPU hardware and runtime which VRFs are executing the same
instructions, and can potentially execute simultaneously. This
allows programmers to express arbitrary levels of parallelism
(even scalar, i.e. single-operand, execution) that change over
time, in a way that reduces code redundancy.

Second, we must ensure that MPU program execution
obeys all real-world hardware constraints, without asking
the programmer to track this. For example, RACER [97]
has at least two such constraints: (1) it limits the number
of active pipelines per cluster to stay within thermal density
limits, and (2) it exposes a non-uniform memory access
(NUMA) interface for cluster-to-cluster communication. Instead
of forcing programmers to know and explicitly manage each of
these constraints, the MPU introduces the register file holder
(RFH), a generic abstraction that embodies all such hardware
constraints. At design time, the system developer defines
RFH mappings in hardware based on whatever constraints
are required by a particular microarchitecture (see Section IV),
and includes constraint management code in the MPU runtime.
During program execution, the runtime enforces hardware
constraints, by managing which RFHs in an ensemble can
actually execute simultaneously to stay within the designer-
defined constraints, taking this burden away from the binary.

Third, we want to maximize the portability of MPU binaries.
The ensemble/RFH combination allows MPU applications
to avoid encoding hardware constraints into the binary. We
also aim to eliminate datapath-specific instructions, so that a
programmer (and, eventually, a compiler) can generate binary
instructions that can execute across many different datapaths.
To avoid datapath-specific information, we carefully study
the instructions currently exposed by popular bitwise PUM
datapaths, and replace them with a common MPU ISA. Already,
most PUM datapaths convert assembly instructions into low-

i
'
bbop I :
I
I (from CPU) RFH: ' Window 2 Window 1 Window 0
4 1
1 ' ol r ol = ol
3 Hes|8 e E
. 10 @ 5T (] ° ® T
ol | 1128 (|m 23| m a3 |m
(2] EREY R g3||a g3||a
| (DRI P, S, S S S M et B I B HIRE-S == 53
1‘72*.1 L '
7 AAP/AP H h
(- ir (to DRAM) I g E—— E— ‘
‘ Register " 1L | w
i |
il TR VRF! | 8
! : e i] f i+
| w0 [. JoJoT 1] 1] i e 3|
i -
[

[} :‘
..

(a) RACER
Fig. 4. Mapping RF holders and VRFs to hardware for (a) RACER, (b) MIMDRAM, (c) Duality Cache. Datapath figures reproduced from original papers.

level technology-specific micro-ops (e.g., NOR), and include
some form of instruction-to-micro-op decoding; we propose to
replace this with a universal decoder in hardware that translates
MPU instructions into datapath-specific micro-ops.

Fourth, as much as possible, we want MPU applications to
perform control flow inside PUM hardware to avoid frequent off-
chip CPU requests. In the MPU control path, we introduce light
hardware support that (1) significantly improves the granularity
of control flow (even making scalar execution possible), and
(2) efficiently tracks loop conditions. With this support, which
builds on top of our per-lane masking ability, it is possible for
end-to-end PUM applications to avoid the need for CPU-side
control flow entirely.

IV. INTEGRATING THE MPU WITH PUM DATAPATHS

In this section, we first demonstrate how the MPU’s RF
holder and VRF abstractions can be mapped to different PUM
datapaths (i.e., microarchitectural back ends), as shown in
Figure 4. We then show how the MPU leverages the RF holder
mapping to schedule the execution of ensembles while adhering
to PUM-specific hardware constraints.

When designers integrate the MPU front end with a bitwise
PUM datapath, they must appropriately map vector register
files (VRFs) and register file holders (RFHs) to datapath
hardware. We demonstrate three example mappings for RACER,
MIMDRAM, and Duality Cache. A VRF is expected to map to
one or more physical memory arrays in the datapath, with the
designer ideally picking the smallest collection of arrays and
associated peripheral components capable of vector register
access. An RFH is expected to map to one or more VRFs, but
its specific mapping is hardware design dependent, so designers
must use it to encompass two types of constraints.

First, a designer should identify which constraints require
runtime scheduling and/or throttling. For example, Figure 5
shows how thermal dissipation can limit the number of activated
memory arrays per unit area in several PUM datapaths [45, 78,
98, 103]. For these datapaths, an RFH should contain multiple
VRFs, where only one VRF can be activated at a time, and
where the total VRF count ensures that the datapath always
remains within thermal limits.

Second, the designer should identify any shared hardware
components across VRFs that inherently constrain parallel

(b) MIMDRAM

global row buffer

i
(c) Duality Cache

[CJLiquid Si A FloatPIM < Duality Cache ©RACER @ MIMDRAM
100 g U

g R

Power Density
(W/mm?2)

24

0 10
% Active Memory Arrays Per Area

0.01

20 30 40 50 60 70 80 90 100
Fig. 5. Power density of PUM datapaths vs. active memory arrays.

execution. These components can include control units, periph-
eral circuitry, or network components, and are often shared by
VREFs in close physical proximity with each other. For example,
Duality Cache [31] does not suffer from thermal throttling in
Figure 5, but is rate limited because nearby memory arrays
cannot execute different instruction streams simultaneously,
due to the limited number of instruction controllers.

RACER. In RACER, we map each pipeline to its own VRF.
While our VRF spans multiple tiles (see Section II-C), the
MPU does not have to manage tile execution individually,
as RACER’s pipeline control circuitry (PCC) coordinates a
bit-pipelined instruction across these tiles in hardware. A
w-bit word is striped across the tiles of a pipeline so that
each bit occupies the same row and column in a tile. With
this organization, an n-element vector register is mapped to
w columns (each containing n rows) of the same address across
w tiles (i.e., vector register i is mapped to Column i across
all tiles). As discussed previously, pipelines/VRFs in close
proximity cannot be activated at the same time because of
thermal dissipation limits. Conveniently, RACER groups 64
pipelines into a single unit called a cluster, with pipelines in a
cluster sharing one PCC. To adhere to thermal limits, we map
an RFH to a single RACER cluster (Figure 4a), limiting the
number of active pipelines per cluster.

MIMDRAM. MIMDRAM (see Section II-C) stores a w bit
word across w consecutive memory cells in a single DRAM mat.
Thus, vector register i maps to Columns i*w through ixw+w-1,
and a VRF maps to a single DRAM mat (Figure 4b). Like
RACER, MIMDRAM cannot activate all VRFs in the same
area due to thermal dissipation constraints. Thus, each of its

1PEs is mapped to its own RFH because each of them controls
a group of mats/VRFs that are physically nearby. Micro-ops
(TRAs) need to be serially applied to the w columns that store
the word.

Duality Cache. The organization of Duality Cache is similar to
that of MIMDRAM, with each issue window containing a loop
finite state machine (FSM) that is used to deliver the micro-ops
to the correct bitline. In this microarchitecture, vector register i
maps to Columns i*w through i*w+w—1, and a VRF maps to
a single SRAM subarray (Figure 4c). Unlike MIMDRAM, each
issue window hardware is directly connected to a specific group
of SRAM subarrays, which cannot be activated simultaneously.
Thus, we map an RF holder to each issue window, and the
MPU can leverage the loop FSM as the vector mapper.

V. WRITING AN MPU PROGRAM

At the heart of MPU programming are ensembles, which as
we discuss in Section III allow programmers to dynamically
group VRFs together when they are executing the same task.
Figure 6 shows an example of how a program can instantiate
an ensemble using our MPU ISA (32-bit instructions, 64-bit
data). For each block of a program (where the length of a block
is left up to the programmer), the programmer instantiates an
ensemble and associates it with one or more VRFs. Unlike
the RFH, the VRFs in an ensemble can be located anywhere
within the MPU, and need not be physically adjacent. We
introduce two types of ensembles in the MPU: (1) compute
ensembles, which enable the execution of MPU instructions
across a programmer-defined ensemble; and (2) transfer en-
sembles, which enable synchronization and memory-consistent
data communication. Our control path hardware and runtime
(Section VI) handle ensemble execution and state management.

// Compute Ensemble 1 // Transfer Ensemble
1: COMPUTE RFH1 VRF1 g 11: MOVE RFH1 RFH2
: COMPUTE RFH3 VRF1 & 12
<

2 MOVE RFH2 RFH3
3: COMPUTE RFH3 VRF2 < 13: MEMCPY r® VRF@ r® VRFO
4: body 14: MEMCPY rl VRFO rl VRFO
5: SUBr2 r3 r4 "7 15: MOVE_DONE
6: COMPUTE_DONE footer // Inter-MPU Communication

16: SEND MPU4
// Compute Ensemble 2 17: MOVE RFH1 RFH4
7: COMPUTE RFHZ VRF1 _ 18: MEMCPY rl VRF1 rl VRF2
8: MUL r® rl r2 19: MEMCPY rl VRF1 rl VRF2
9: MAC r@ r3 r4 20: MOVE_DONE
10: COMPUTE_DONE 21: SEND_DONE

Fig. 6. Ensemble-based example code. Back end abstraction shown in Figure 2.

A. Compute Ensembles

As shown in Lines 1-10 of Figure 6, a compute ensemble
consists of three parts, and we introduce three instructions
into the MPU ISA for ensemble management (Table II). The
header of the compute ensemble uses one or more COMPUTE
instructions (one per VRF) to select which VRF(s) the ensemble
should use. The body consists of arithmetic instructions to be
executed by all VRFs in the compute ensemble. In a departure
from other data-parallel execution models, such as the warp-
centric GPU SIMT model, the constituent VRFs do not assume

any concurrent execution, enabling greater MPU scheduling
flexibility." The footer has a single COMPUTE_DONE instruction
to indicate the end of ensemble execution.

Our approach allows programmers to treat compute ensem-
bles as lightweight threads. Similar to conventional threading,
the MPU does not explicitly manage dependencies across
concurrent compute ensembles, resulting in shared-memory-like
interleaving semantics when two ensembles access the same
vector register. To allow programmers to explicitly manage
dependencies between compute ensembles, we introduce an
MPU_SYNC instruction, which is a fence for compute ensembles.

B. Transfer Ensembles

The MPU ISA includes a second kind of ensemble, the
transfer ensemble (e.g., Lines 11-15 in Figure 6), to transfer
data between VRFs. A transfer ensemble’s header contains
one or more MOVE instructions, where each instruction sets up
a source RFH and destination RFH pair. For PUM datapaths
with circuit-switched networks, these instructions can also set
up network paths prior to performing data transfers. In the
body, each MEMCPY instruction copies one vector register from
a source VRF to a register in a destination VRF for each RFH
pair. The footer consists of a single MOVE_DONE instruction.

Unlike compute ensembles, transfer ensembles must guar-
antee memory consistency, as a VRF can read another VRF’s
data during the transfer. Because PUM datapaths currently
only support in-order execution, we make use of sequential
consistency [61], where the MPU guarantees that instructions
are executed to completion and in the order specified by the
ensemble. To enforce consistency, an MPU executes only one
transfer ensemble at a time. Across multiple MPUs, we enforce
consistency by employing an explicit message-passing interface
(Lines 16-21 in Figure 6), which also enables scalable inter-
MPU communication. Inter-MPU messages are set up using
SEND and SEND_DONE instructions in the sender MPU, and
RECV in the receiving MPU, with these instructions able to
realize complex communication patterns such as gather—scatter
and broadcasting. To guarantee deadlock avoidance, we force
MPUs with lower MPU IDs to SEND first, and break circular
dependencies across concurrently executing transfer ensembles
using our runtime.

C. Simplifying Programming With ezpim

Existing PUM datapaths are capable on their own of
executing only relatively simple kernels, and rely on an external
host processor to handle complex control decisions during full
application execution. We design the MPU to eliminate the
need for the CPU, by introducing six control instructions that
programmers can use to express multi-level for and while
loops, if/else statements, and subroutine calls (see Table II).

'We consciously avoid the warp-centric model for two reasons. First, it
would require branches and enable signals to be evaluated by all VRFs,
incurring significant delays due to (1) the number of VRFs, (2) thermal limits
preventing all VRFs from executing concurrently, and (3) the often-slow nature
of PUM condition evaluation (e.g., CMPEQ, compare equality). Second, it would
become difficult to enable more than one ensemble/kernel concurrently, as
the data store is the processing element, and there is no need for (or way to
mimic) latency hiding techniques that assign multiple warps to a GPU core.

TABLE II
MPU BASE INSTRUCTION SET

Instruction Description

Ensemble Deployment

COMPUTE <rfhID> <vrfID> Demarcate start of an ensemble, activate
VRF vrfID of RFH rfhID

COMPUTE_DONE Demarcate the end of an ensemble

MPU_SYNC Sync all deployed ensembles, wait until com-

plete to proceed

Demarcate the start of a move block with
source RFH rfhSRC and destination rfhDES
Demarcate the end of a move block

MOVE <rfhSRC> <rfhDES>
MOVE_DONE

Inter-MPU Communication

SEND <mpuDES>
SEND_DONE
RECV <mpuSRC>

Send an execution block to mpuDES
Demarcate the end of SEND
Service an ensemble coming from mpuSRC

Control Flow Instructions

GETMASK <rd>
SETMASK <rs>
UNMASK

JUMP_COND <lineNum>

Get mask bits from mask register, put in rd
Copy rs to mask register, start predication
Stop predicated execution

Jump to lineNum if mask register returns all
logic Os, else go to next line

JUMP <lineNum> Jump to LineNum

RETURN Return to next line of code after where JUMP
was calle
NOP Do nothing (i.e., insert a bubble)

Arithmetic Instructions

ADD <rs>, <rt>, <rd>
SUB <rs>, <rt>, <rd>
INC <rs>, <rd>

INITO <rd>

INIT1 <rd>

MUL <rs>, <rt>, <rd>
MAC <rs>, <rt>, <rd>
QDIV <rs>, <rt>, <rd>
QRDIV <rs>, <rt>, <rd>

Two’s complement add (rd = rs + rt)
Two’s complement subtract

Increment a number by 1 (rd = rs + 1)
Initialize rd with O

Initialize rd with 1

Multiply (only 8-/16-/32-bit inputs)
Multiply-accumulate (rd += rs X rt)
Division that returns quotient

Division that returns quotient in rt and re-
mainder in rt (overwriting register)

RDIV <rs>, <rt>, <rd> Division that returns remainder

POPC <rs>, <rd>
RELU <rs>, <rd>

Population count
Rectified linear unit

Comparison & Search Instructions

CMPEQ <rs>, <rt> Check equality (result in conditional register)
CMPGT <rs>, <rt> Check rs > rt (result in conditional register)
CMPLT <rs>, <rt> Check rs < rt (result in conditional register)
FUZZY <rs>, <rt>, <rd>

FuZZf' comparison, skipping bits set in rd
(result in conditional register)

CAS <rs>, <rt> Compare and swap

MUX <rs>, <rt>, <rd> Multiplex (i.e., choose) rs or rt based on
bitmask in rd

MAX <rs>, <rt>, <rd> Returns larger number

MIN <rs>, <rt>, <rd> Returns smaller number

Boolean & Bit Manipulation Instructions

Bitwise AND
Bitwise NAND
Bitwise NOR
Bitwise NOT
Bitwise OR
Bitwise XOR
Bitwise XNOR

Reverse the order of bits
Left shift by 1

Data Movement Instructions

MEMCPY <vrfSRC> <rs>, Copy vector register contents across VRFs
<vrfDES> <rd> (only possible during a move block)
MOV <rs>, <rd> Copy vector register contents within a VRF

AND <rs>, <rt>, <rd>
NAND <rs>, <rt>, <rd>
NOR <rs>, <rt>, <rd>
INV <rs>, <rd>

OR <rs>, <rt>, <rd>

XOR <rs>, <rt>, <rd>
XNOR <rs>, <rt>, <rd>

BFLIP <rs>, <rd>
LSHIFT <rs>, <rd>

To reduce programmer burden in writing assembly-level control
instructions, we develop a Python-based advanced assembler
called ezpim, which can integrate MPU ISA instructions with

control semantics similar to those found in high-level languages.

With this support, our MPU enables a single PUM chip to

perform standalone execution of end-to-end programs. We
hope that future works can build upon ezpim to develop a full
compiler, and envision that our work can enable PUM programs
to make use of popular parallel programming frameworks such
as OpenMP and MapReduce.

Comparison-Based Predication. A key issue for the pro-
grammability of SIMD architectures such as our vector-based
datapaths is providing support for control flow constructs
commonly found in high-level programming languages (e.g.,
if—else conditionals, for and while loops). A typical SIMD
architecture uses a single instruction to compute on multiple
data elements [30]: for fixed-width vector processing, a vector
is treated as an array of data elements where each element
is executed in its own lane. Vector-based datapaths often
implement some form of predication [13], which enables
architectural support to mask operations on a per-lane basis,
by mapping a bitmask (i.e., the predicate) to the enable logic
of each lane. To execute an if—else conditional on a fixed
vector, where the conditional depends on data stored within a
vector, the datapath executes both the if and the else body
on the vector. With predication, the datapath applies a mask
based on the outcome of the condition evaluation to correctly
enable those lanes participating in the if body (while disabling
the other lanes), and then inverts the mask to enable the lanes
participating in the else body.

The MPU extends predicated execution with hardware-
assisted support for dynamic loops. To facilitate this in the ISA,
the MPU introduces a conditional register, which holds the per-
lane bitmask resulting from the execution of our comparison
instructions (see Table II). The contents of the conditional
register (or any data register in the MPU) can be used to
control hardware (Section VI-B) that (1) enables and disables
individual vector lanes in the datapath, and (2) can allow for
lane divergence during dynamic loops and detect when all
lanes have exited the loop. While the lane masking logic sits
in the MPU control path, we provide programmer support to
read out the current lane mask, so that it can be modified in
the datapath (e.g., to support arbitrary loop/branch nesting).
We discuss how programmers can use this support below.

Dynamic Loops. Existing datapaths can evaluate static loops
using loop unrolling, but this (1) does not support dynamic
data-driven loop conditions (i.e., when the iteration count is
unknown at compile time); (2) often requires significant manual
intervention; and (3) exacerbates binary capacity pressure. The
MPU avoids this by providing hardware/software support for
dynamic loops. In the MPU ISA, we introduce the JUMP_COND
instruction, which uses program-generated masks to decide
which lanes should participate in the next iteration of a
loop. The MPU control path contains a mask register that
holds a bitmask, where each bit corresponds to a vector lane,
and controls whether the lane is enabled or disabled. When
JUMP_COND is invoked, the control path uses this mask to
determine which vector lanes have reached the loop termination
condition (using hardware support shown in Figure 7d; see
Section VI-B for details), and advances past the loop when
all lanes are disabled. With ezpim, programmers can use

for(r0=0; ro<rl; ro+=1)

o
2 A to MPU front end
endfaop 2 r3 r2 1: INITO ro 3
2: CMPGT r0 rl ELIH
3: ADD r2 r3 r2 =
WhElecrb < 21 4 ADD x0 <I> 10 3
ADD 'x2 3 r2 : - MPU Abstraction
pal <1> r O I —
endfor (a) RFH 0
1: CMPGT r0 rl m
1FCz0 > 1) 2. GETMASK ru | __ VRF0_.-Condit} Ko
ADD 12 r3 12 3: SETMASK r4 Va”ﬂst
13 5 ORmASK
end P REREEES 6: INV r4 ru GETMASK
ADD rli r5 r6 7: SETMASK ru Mask Programmable
8: MUL r2 r3 r2 b [Reg.
9: UNMASK VRF
if(re > r1) 1: CMPGT r0 rl
if(r4 < r5) 2: GETMASK ré6
ADD r2 r3 r2 3: CMPLT r4 r5
else 4: GETMASK r7
SUB r2 r3 r2 5: AND r6 r7 ré6
endif 6: SETMASK ré6
else 7: ADD r2 r3 r2
MUL r2 r3 r2 8: UNMASK
endif 9: INV 16 ... (© (d)

Fig. 7. ezpim code (left) and MPU ISA output (right) for (a) for/while
loops, (b) branches, (c) nested branches; (d) MPU complex control support.

conventional for and while loops as shown in Figure 7a,
which ezpim automatically converts into conditional evaluation
and JUMP_COND instructions.

Branches. We can reuse the lane masking support to implement
per-lane branching for a VRF. To support inline branching,
we introduce the SET_MASK instruction, which retrieves a
comparison result from a VRF register and loads it into the
VRF’s mask register. This allows multiple use cases, including
(1) evaluating a branch condition several instructions before
performing the branch, (2) statically setting the branches instead
of using a branch condition, and (3) enabling arbitrary levels
of branch nesting. Figure 7b shows how ezpim can translate
in-assembly if and else commands written by a programmer
into the MPU’s masking instructions. If a branch mask needs
to be updated (e.g., to reflect a new branch nesting level), the
GET_MASK instruction copies the current lane mask’s contents
into a regular VRF register (disabling the mask lane control
to ensure that all bits of the mask are copied), at which point
the MPU can perform arbitrary computation to update the
mask (Figure 7c). To exit the branch, the UNMASK instruction
re-enables all lanes by setting all mask bits to 1.

Subroutine Calls. To support subroutines, we introduce a JUMP
instruction into the MPU ISA. Unlike JUMP_COND, JUMP’s
targets are not limited to the current ensemble, and can be
anywhere in the binary where the subroutine call lies. The JUMP
instruction saves the current PC into a return address stack in
the control path hardware, and we add a RETURN instruction
that pops an address from the stack upon a subroutine exit. In
ezpim, programmers can simply define and call subroutines, and

the assembler will add in the correct JUMP/RETURN instructions.

VI. MPU CONTROL PATH HARDWARE & RUNTIME

In this section, we discuss how our example control path
hardware and runtime software can execute MPU code on
bitwise PUM datapaths. Figure 8 shows the components of
our control path: (1) a precoder, which stores the binary and
distributes instructions to specific controllers; (2) one or more
compute controllers (CCs), which manage the runtime state of
compute ensembles; and (3) a data transfer controller, which
handles transfer ensembles and inter-MPU communications.

External Storage/

Instructlon

HostCPU
Precoder lrsts
MPU Inst. COMPUTE/ Transfer ~ MOVE/|
D e ®COMPUTE,DONE Inst. MOVE_DONE, %] o ,”;Q“
Data Transfer
Compute Contrcller 0 Controller
Dcder £ 2 Schedulej 5 T
ecipe [A £
@ % Activation Board 'g Jargsthap
Template ’;”P g § RFHO :RFH1 i 8 LT s
Fitler || Ky vee e e v R [Y WY
@ Micro-Ops | @ Activation Signals Data €D (3]
al. chingInfrast ut
RFHO RFH 1 RFH 2 RFH r
-EVRFO ||| HEVRFO]| | HEIVRFO ~EVRFO |
-] VRF1 -] VRF1 DVRF1 DVRF1
MPU Abstractlon(ofdatapath e.g., RACER, MIMDRAM)

Fig. 8. MPU control path hardware for an abstracted datapath.

A. Precoder

The precoder includes an instruction storage unit (ISU) that
stores a program binary on chip, and a fetcher unit that uses a
program counter to retrieve the next instruction(s) from the ISU.
Note that the ISU can be implemented using many different
memory technologies (e.g., the same types of arrays being used
for PUM data in the datapath; SRAM-based caches), with the
specific choice left to the hardware designer based on platform
needs. If an MPU binary exceeds the capacity of an ISU, the
runtime can borrow capacity in the ISU of nearby MPUs. (In
practice, we find that thanks to ezpim and the MPU ISA, all of
our binaries fit within a single ISU.) The fetcher uses metadata
from ensemble headers and footers to determine which control
units it should distribute ensemble body instructions to.

B. Compute Controller

The compute controller (CC) unit executes one compute
ensemble at any given time. At the start of an ensemble, the
fetcher assigns a CC to the ensemble, and issues metadata to the
CcC (@ in Figure 8), which the CC uses to enable specific VRFs
in its activation board (@). Each CC’s activation board has
an enable bitmask for every VRF in the MPU. Once ensemble
body execution starts, the fetcher issues compute instructions
to the CC for the VRFs to execute. The CC commits the
instructions to its playback buffer (@), which allows the CC
to replay a sequence of instructions multiple times if hardware
constraints prevent full VRF concurrency (Section VI-C), or if
the instructions contain a dynamic loop (Section V-C).

For each sequence replay (as determined by the scheduler;
Section VI-C), the CC issues instructions one at a time from the
playback buffer to the instruction-to-micro-op decoder (12M).
While different back-end datapaths have different micro-ops
(Section II-C), we design a universal I2M that can support any
of these. The I2M translates an instruction into m micro-ops,
where the value of m depends on the specific instruction and
the available micro-ops. For some PUM datapaths, a single
instruction can expand into hundreds, if not thousands, of
micro-ops, placing significant pressure on micro-op decoding.

To address this, the I2M uses a recipe table implemented as a
parallel lookup table. The recipe table stores recipes (micro-op
sequence templates) for each compute instruction, where the
recipe includes micro-ops but not specific register addresses. A
template filler in 12M uses information about the active VRFs
to populate VRF-specific addresses into each micro-op in the
recipe. The 12M then dispatches the filled-in micro-ops to the
back end, where it is executed by the activated VRFs (@).

The ensemble execution model allows multiple ensembles
from the same program to exist concurrently. Thus, multiple
CCs can exist in the MPU control path. Once the fetcher
finishes issuing an ensemble subsequence to a CC, it can start
issuing another subsequence from a different ensemble to a
new CC. Realistically, the number of CCs an MPU can support
depends on the sizes of the playback buffer and recipe table,
the two most area-/power-intensive components.

Recipe Table Optimizations. While the recipe table reduces
I2M pressure to a degree, a pressure point remains in that
the table’s capacity is practically limited to a few thousand
micro-op templates. We propose three mechanisms to relieve
capacity constraints, as shown in Figure 9. First, as we observe
that multiple instructions often share portions of their recipes
(e.g., ADD and MAC), we can add a pointer table that allows a
recipe to point to common recipe subsequences. Second, we
can include a template lookup table, which stores pointers to
recipes in binary storage, and can dynamically cache recipes
into the recipe table once an instruction is issued. Third, we
can share recipe table hardware across multiple CCs.

Recipe Table

ADD rl r2 fommmmmmm—m—— e m— o m e m F==>rl r2
= |[PointerTable .Template Lookup H
Instr. | Start | Stop -5:6' """""""""""" | A 4
![XOR A B il
oA s il Template

Filler

57:|AND A B i2|i

MAC | 00 | 60 d -

: se: [x0r 11 10 ¢ | \Z

M
<. d

Full-Adder Equations
Used for ADD & MAC

Fig. 9. Example of an optimized recipe table implementation.

Complex Control Flow. To support the control flow in
Section V-C, we use an observation that many bitwise PUM
datapaths add independent voltage assertion units to each row
of a memory array, in order to isolate the electrical interactions
of each row. The MPU leverages these units to implement
vector lane masking: we add a mask register to each VRF
in the datapath, which sits at the voltage supply lines to the
memory arrays and contains one control bit per lane. For each
lane (e.g., a memory array row), the mask register chooses
whether the lane receives a voltage assertion required for the
active operation, or is disabled (i.e., power gated).

Our in-VRF masking allows us to implement efficient
hardware for data-driven predicated execution of arbitrary
nesting depth. The SETMASK instruction can retrieve a bitmask
from either (1) the conditional register (Section V-C) or (2) one
bit of data from each element in a vector register, and copy this

into the mask register to enable/disable lanes. To support control
instructions such as JUMP_COND, which use the mask register
contents to determine whether to continue loop iteration, we
add logic to the CC called the evaluation fetching infrastructure
(EFT; Figure 7d). The EFI sits at the interface between the
CC and the datapath, and when the CC executes a control
instruction such as JUMP_COND, it uses the EFI to copy the
contents of the mask register into the CC and determine if any
of the lanes remain enabled. If at least one lane is enabled,
the EFI notifies the scheduler to update the program counter
to the jump target and continue issuing micro-ops. If all lanes
are disabled (i.e., the mask contains all Os), then the jump is
not taken, and the scheduler proceeds to the next instruction.

C. Scheduling Algorithm & Hardware

A key constraint in many PUM datapaths is that their power
density scales proportionally to their throughput. When coupled
with the density of modern memories, an unrestricted PUM
datapath can easily exceed safe air cooling limits [44] and cause
irreversible hardware damage. To ensure safe operation, the
MPU scheduler uses vendor-provided data on the relationship
between the fraction of active VRFs per RF holder, the
instruction type, and expected power density, to cap the total
number of activated VRFs.

Figure 10 describes the MPU scheduling algorithm in detail.
We implement the scheduler in hardware, but the MPU model
allows for software-based schedulers as well. As an ensemble
activates VRFs for execution, the scheduler tracks the number
of activated VRFs per RFH across all currently executing
ensembles (Lines 3-5). If any RFH reaches its constraint-
defined maximum active VRF count, the remaining VRFs for
that RFH are placed in a standby queue. Once all currently
active VRFs complete execution, the compute controller raises
a hardware exception to the scheduler (Line 11), and if any

i while True:
activate all VRF addresses in each per-RFH queue
for queue in rf_active_queues:

4 for vrf in queue:

5 activate(vrf)

6 serve = serve_interupt_playback_full()

7 # reactivate same VRFs for next ensemble body segment

8 if (serve):

9 jump 2

10 # at ensemble end; restart if there are queued VRFs

11 serve = serve_interupt_footer()

12 if (serve):

13 if (len(waiting) != 0):

14 for (active, waiting) in

15 zip(rf_active_queues, waiting_queues):
16 active.clear()

17 thermal_counter = 0

18 # only activate a certain number of VRFs

19 if (thermal_counter < limit):
20 active.append(waiting[0])

21 waiting.pop()

2 thermal_counter++

2 jump 2

2 # 1f nothing left to activate, retire ensemble
25 else:

26 notify_ensemble_done()

Fig. 10. MPU thermal-aware scheduling algorithm.

VRFs are on the standby queue, the scheduler (1) deactivates
the just-completed VRFs, (2) activates the VRFs on the queue
(again enforcing RFH limits), and (3) executes the ensemble
on the newly activated VRFs.

The runtime and scheduling algorithm can also assist with
binary portability. To a degree, MPU binary portability is similar
to that of GPU kernels: while VRFs, RFHs, and ensembles
abstract away hardware specifics, the number of VRFs per RFH
is specific to a datapath. To allow for portability, we encode the
compile-target VRFs-per-RFH parameter in the binary, and the
MPU runtime can perform some degree of RFH/VRF-to-MPU
remapping if the target hardware uses a different parameter
(provided enough resources are available). As is the case with
GPUs, we envision that MPU binaries can benefit from some
degree of autotuning support (though the search space is likely
significantly smaller in scope than with GPUs).

D. Data Transfer Controller

The data transfer controller (DTC) handles the execution
of one transfer ensemble at any given time. At the start of a
transfer ensemble, the fetcher sends metadata from the header
to the DTC, which uses the information to configure its farget
map. The target map stores pairs of source and destination
RFH/VRF addresses. Once the fetcher starts sending data
transfer instructions from the ensemble body, the DTC performs
the transfers on one or more of the pairs in the target map (@
in Figure 8), with the number of concurrent transfers dependent
on the datapath’s underlying network. Optionally, the DTC may
contain a data buffer for intermediate storage during a transfer
(@). A data buffer can help in three cases: (1) facilitating
long-distance transfers, (2) enabling data pre-processing for
complex transfer instructions (e.g., broadcast, transpose, vector
shift, data transpose), and (3) inter-MPU message buffering.

Inter-MPU Controller. This unit is activated when a SEND
or RECV message-passing instruction is fetched (@). When
sending a message to another MPU, the inter-MPU controller
first requests the necessary data from the back end via the
target map (@), waits for the data to be populated in the data
buffer, and then sends the data to the destination MPU (@).

VII. METHODOLOGY
We evaluate the MPU for three PUM datapaths:

¢ ReRAM-based RACER [97] with OSCAR-based NOR [98],
e DRAM-based MIMDRAM [78], and

e SRAM-based Duality Cache [31].

We compare these to (1) Baseline, the original versions of
the datapaths (which use the host CPU to execute non-PUM
instructions); and (2) a modern 16384-core NVIDIA GeForce
RTX 4090 GPU [75]. We also compare against a 16-core
Intel Xeon Gold 6544Y CPU [46], but omit those results for
brevity as the GPU always outperforms the CPU. All PUM
architectures use iso-area comparisons for a 4 cm? chip (i.e.,
we reduce the number of MPUs to compensate for front-end
hardware area). Table Il summarizes system parameters.

Applications. We start our evaluations using 21 data-intensive
kernels from a wide range of application domains. We split

TABLE III
SYSTEM PARAMETERS

MPU:RACER/MIMDRAM/Duality Cache (non-exhaustive)

Pointer Table Entries 20
Template Lookup Entries 1024

20-bit entry/opcode
24-bit entry/micro-op template

Bits in Activation Board 512 1 bit per VRF in MPU
Playback Buffer Entries 1024 27 bits per stored instruction
Instruction Storage Cap. 2MB per MPU

Active VRFs Per RFH 1/256/256 due to thermal constraints

RFHs Per MPU 8 due to interconnect constraints

MPUs on Chip 497/450/12 each MPU manages 16 MB of memory
Compute Controllers 1 per MPU

Micro-Op Issue Rate 1 micro-op per cycle per MPU

Host CPU (based on Intel Xeon Gold 6544Y [46])

Cores 16 x86, 000, 4 wide

L1 Inst./Data Caches 80kB each, 8-way set associative, per core
L2 Caches 2MB 8-way set associative, per core

L3 (Last-Level) Cache 45MB 16-way set associative, shared
Memory 8GB DDR3L, 64-bit bus

these into four groups: (1) basic kernels that the RACER
datapath can execute without CPU/MPU support, (2) branch-
focused kernels with multiple nested branches, (3) stencil
kernels that are challenging to express without a robust
execution model, and (4) complex kernels with complex control
instructions that the three PUM datapaths are unable to execute
without the CPU/MPU. Then, we evaluate three complex end-
to-end applications: (1) LLMEncode, a large language model
(LLM) encoder [100]; (2) BlackScholes, a financial model used
to price options [17, 18]; and (3) EditDistance, a bitap-based
genome sequencing algorithm to calculate the distance of (i.e.,
difference between) two genome reads [86, 92, 93].

For the GPU, we work to maximize optimizations for each
application, in order to present a fair and competitive compari-
son. All applications are written in CUDA, and make extensive
use of kernel fusion and highly optimized libraries such as
NVIDIA cuBLAS [74] to maximize GPU core utilization
(which we verified using NVIDIA’s profiling tools [76]). We
make use of multiple kernel streams, overlapping compute and
communication for independent streams as much as possible.

Modeling & Simulation. We extensively overhaul and modify
RACER-Sim [11] to develop MASTODON (Memory Array
Simulation Testbed for Organization, Data, Operations, and
Networks) [12], a cycle-accurate simulation of the MPU
that can faithfully emulate the RACER, MIMDRAM, and
Duality Cache back ends. We validate the MIMDRAM and
Duality Cache performance and energy statistics reported by
MASTODON with data reported in the original papers [31,
78]. We synthesize critical components of the MPU using
Synopsys Design Compiler [94] with the FreePDK 15nm
process [16]. Our synthesized circuitry achieves a frequency
of 1GHz, and we ensure our simulator’s cycle accuracy for
each MPU model by calibrating to critical paths identified
by Synopsys timing tools. We integrate MASTODON with
the Structural Simulation Toolkit (SST) [82, 85], leveraging
existing cycle-accurate modules to faithfully model inter-MPU
communication and on-chip network properties. We have open-
sourced MASTODON (along with ezpim) under the MIT
License [12]. GPU runs are performed using a real RTX 4090.

10

VIII. EVALUATION
A. MPU Front End: Area & Power Analysis

From synthesis, we find that an MPU front end has a
total area of 0.123mm?, with a static power of 1.22mW
and a dynamic power of 71.72mW. Figure 11 breaks down
the control path power and area. We observe that storage-
based components (e.g., playback buffer, template lookup) are
responsible for 53% of the total front-end area, 91% of its
static power, and almost all of its dynamic power.

[[] Precoder [] Activation Board [I] Playback Buffer
[l Template Lookup [Data Transfer Controller

Dynamic Power
71.72mW

Static Power
1.22mW

Area
0.123 mm?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 11. Power and area breakdown for a single MPU front end.

As an example, if we augment RACER with 512 MPUs on
chip, the total chip area increases from 4.00 cm? to 4.63 cmz,
while static power goes from 330 mW to 955 mW. The MPU
control path consumes a maximum of 36.7 W at runtime, or
40.2% of RACER’s total system power. Note that the iso-area
evaluations below use fewer than 512 MPUs (see Table III).

B. MPU Improvement Analysis

Our primary goals in this experiment are to demonstrate that
(1) the MPU’s VRFs, RF holders, and support infrastructure
are sufficiently general to integrate with multiple PUM data-
paths; and (2) the MPU can deliver performance and energy
improvements across all three of our evaluated back ends over
their original implementations. Figure 12 shows the speedup
and energy savings of the MPU:RACER, MPU:MIMDRAM,
and MPU:DualityCache configurations. For each configuration,

we normalize its performance and energy to its respective
baseline (e.g., MPU:RACER is normalized to Baseline:RACER,
MPU:MIMDRAM is normalized to Baseline:MIMDRAM). We
make three observations from the figure.

First, all three MPU configurations achieve better perfor-
mance than their respective baselines: the MPU front end speeds
up RACER by 78.7%, MIMDRAM by 69.5%, and Duality
Cache by 12.3%. We attribute these speedups to the fact that
Baseline spends a considerable amount of time communicating
with the host CPU, which the MPU eliminates. As an example,
for the basic kernels, which lack much control flow and
therefore have minimal CPU-PUM communication, the MPU
incurs minor slowdowns (e.g., RACER’s average slowdown is
3.1%, with no drop greater than 4.9%), predominantly due to
the reduction in datapath capacity for iso-area comparisons.

In contrast, stencils and complex kernels have a significant
amount of control flow. Stencils require multiple pieces of data
to be retrieved based on a specific pattern. To reduce the asso-
ciated control complexity, prior PUM datapaths convert stencil
microkernels into matrix-multiplication-based microkernels
with much simpler data fetching patterns (e.g., Toeplitz matrix
transformation), but this inflates the application footprint by
approximately 4 x. For the complex kernels, Baseline datapaths
are unable to execute the kernels on their own, and thus rely
heavily on the CPU, while the MPU control path eliminates
all of the datapath—CPU communication. As an example, on
average across these two categories, MPU:RACER achieves
4.4 x the performance of Baseline. In some cases (e.g., ibert-
sqrt, euclidean), Baseline’s external transfer overhead is so
significant that its overall performance is worse than GPU.

Second, all three MPU configurations achieve significant
energy savings over their respective baselines: The MPU front
end delivers energy savings of 3.23x for RACER (i.e., an
energy reduction of 69.0%), 2.34x for MIMDRAM, and 4.07 x
for Duality Cache. The predominant sources of these savings
are (1) the reduction in CPU energy, as we eliminate CPU-PUM
communication for control operations; and (2) improvements to

5
B MPU:RACER N B N & R: 78.7%
4 4 o w -]
%3 O MPU:MIMDRAM M: 69.5%
ER
@ O MPU:DualityCache D: 12.3%
22
* N o I e e e et e e e e B A I
0] o 2 w s e g _ 5 = -
S 3 o o & ® ¢ £ s o £ o T 8 s | B g S 3 o 3 H
E E g g ¢ ¢ £ E § 8 2 g £ g 5|2 2 £ E Q8 = 2
it S S £ = i) ® o c S 3] 3 8 © © s £ g =
= w 5 £ " E § g FE 5 5 £ 2 2| ©
7
o6 gk 3 :B.23x
£ | :D.34x
24 14.07x
2 3
8,
8,]
< 1
i 0 A
Basic Branch Focused Stencils Complex

Fig. 12. Speedup (top) and energy savings (bottom) of MPU:X (X = RACER, MIMDRAM, DualityCache), each normalized to Baseline:X.

11

front-end and back-end processing (e.g., more efficient micro-
op expansion, improved instruction reuse, built-in loop support).
Even if we ignore CPU energy savings, the MPU’s processing
improvements reduce energy by 49.8%, 49.2%, and 22.6% for
RACER, MIMDRAM, and Duality Cache, respectively.
Third, MPU:DualityCache has smaller improvements than
MPU:RACER and MPU:MIMDRAM. This is for two reasons:
(1) the Duality Cache arrays are on chip with the CPU, and thus
incur lower communication costs; and (2) the limited on-chip
capacity of Duality Cache (0.2 GB, due to the poor density of
SRAM) forces it to spend significant time transferring data from
the external memory. The MPU abstraction is most effective
for applications that can fit entirely on the MPU:DualityCache
chip (manhattan, ibert-sqrt, softmax, crc32, euclidean). For
these kernels, MPU:DualityCache achieves a 31.1% speedup
over Baseline:DualityCache, due to its dedicated single-cycle
CMOS full adders that augment bitline-based computation, and
its ability to activate all VRFs simultaneously (see Section IV).
We note that MPU improvements are underestimated across
the board, as Baseline does not include its (higher) costs of
non-MPU binary retrieval, while MPU includes all such costs.
We conclude that our MPU design can effectively enable
the same microkernels to achieve reasonable benefits across
multiple datapaths with minimal code changes required.

C. Comparison With GPU

Next, we compare our MPU configurations to a modern high-
performance GPU (the RTX 4090), to (1) provide context for
how large the improvements in Section VIII-B are compared to
executing the kernels on a conventional commercial processor;
and (2) demonstrate that even with its efficient front end for
parallel lockstep execution, the GPU cannot fully exploit the
data-level parallelism available in these kernels. Figure 13
shows the speedup and energy savings of Baseline and MPU
versions of RACER and MIMDRAM, normalized to GPU. We
make three observations from the figure.

First, the MPU configurations outperform the GPU on aver-
age. MPU:RACER does so for all but one kernel, with 67 the

performance of GPU across all 21 kernels.> MPU:MIMDRAM
does so for all but three kernels, achieving a mean speedup of
156 x vs. the GPU. While the underperforming kernels are part
of our complex kernel group, we do observe that the MPU is
able to improve performance over Baseline even for these, and
even pulls MPU:RACER above GPU for ibert-sqrt.

Second, the kernels with the highest improvements differ
between RACER and MIMDRAM. For our stencils, there
exists significant bulk computation that MIMDRAM is better
at exploiting, with its wider vector widths and lower bit-
serial latency, hence the strong stencil improvements for
MPU:MIMDRAM. In contrast, our complex applications benefit
from more granular vectorization (e.g., loops can complete
earlier for more ensembles as there is a lower chance of
divergence), so MPU:RACER is able to achieve strong benefits.

Third, MPU:RACER and MPU:MIMDRAM achieve signifi-
cant energy savings, with an average savings of 47x and 35X,
respectively, over GPU. While much of the improvements over
Baseline for the basic kernels is the result of eliminating idle
CPU energy, the other kernels see large benefits due to the
MPU’s more efficient processing. For example, with complex
kernels, MPU:RACER achieves a 6.2 and 11.3 x improvement
in energy over GPU and Baseline, respectively. This is because
Baseline is bottlenecked by control instruction offloading
between the CPU and the PUM datapath, which increases
the overall execution time and, thus, energy consumption. We
conclude that control-path hardware capable of performing
complex control instructions is necessary for PUM architectures
to successfully execute a broader range of applications beyond
highly parallel basic blocks.

Note that while we do not show graphs due to space
constraints, MPU:DualityCache achieves modest performance
(1.6x) and energy (3.6x) improvements over GPU. The per-
kernel benefits are mixed, with eight kernels demonstrating

2This conservatively assumes that RACER can have only one active VRF per
RFH. If we increase this to two active VRFs, which is still within air-cooled
thermal limits, MPU:RACER reaches speedups of 134x over GPU.

100000
10000 A 7 MPU'RAFEF.G?*
g- 1000 A . -
T 100 -
P il
R
0.1 4 . .
0.01 O Baseline:RACER B MPU:RACER @ Baseline:MIMDRAM 0 MPU:MIMDRAM
. B * = [3) Q _ =) = c
5 S o o ¢+ § 8 £ § o £ 5 % 8 . 8 E § B g 5 =&
E E g ¢ ¢ 3 &£ g S ¢ 8 £ /2 /%2 > £ E Q@ = g
ot S S c & o0)) c 3] S % S 1%} b £ = [§) =
e E S 5 & © g & § E E 5 &€ 3 ° 3 ©
100000 - -
€h 10000 - MPU:RACER: 47%
S 1000 - = 92
& 100 -
3 w0 Ml hi 71
1 4 H !_J_l o
o 01 U m & er
S o0.01 4
0.001 - -
Basic Branch Focused | Stencils Complex
Fig. 13. Speedup (top) and energy savings (bottom) of Baseline:X and MPU:X (X = RACER, MIMDRAM), normalized to GPU; y-axis is in log scale.

12

sizeable improvements, while six show large slowdowns. This
is in large part due to the limited memory capacity of Duality
Cache and its high operation latency (14 cycles), both of which
hamper its abilities (and neither of which are due to the MPU).
We conclude that MPU-based PUM architectures offer
significant performance and energy gains over state-of-the-art
GPUs, overcoming several drawbacks of conventional PUM.

D. End-to-End Application Analysis

Finally, we show that thanks to the efficiencies of the
MPU, it is now feasible to execute entire applications end-
to-end within a PUM datapath. As both MPU:RACER and
MPU:MIMDRAM exhibit strong performance for both basic and
complex microkernels, we investigate these MPU configurations
further by running three complex end-to-end applications. Each
application has multiple compute steps and multiple forms of
complex collective communication, as shown in Table IV. The
table also shows how ezpim significantly reduces complex
application code size.

TABLE IV
END-TO-END APPLICATION EXECUTION STEPS ON THE MPU

Lines of Code
Baseline ezpim

Collective

Commun. MPUs

Application Compute Step

matmul, softmax gather, scatter

LLMEncode layernorm, relu P2P, broadcast 130 15290 1160
BlackScholes sqrt, exp, norm CDF P2P, broadcast 2 1059 383
EditDistance bitwise comparisons 2-D systolic 23 5428 120

Figure 14 shows the speedup and energy savings of four
configurations (Baseline and MPU for both RACER and MIM-
DRAM), vs. GPU. We make two observations from the figure.

RACER
[] Baseline [l MPU [Baseline [] MPU
1000 »n1000
o0

2100 £ 100 ~

= a 10 4
B 10 n — o

cu = 1

2 2., 17
[72] o Y

0.1 TIME = < 0.01 z —
ncode BlackScholes EditDistance L LLMEncode BlackScholes EditDistance

Fig. 14. End-to-end application speedup and energy savings vs. GPU.

First, Baseline’s speedup is highly dependent on the size of
the basic block. For LLMEncode, which contains many large,
regular, highly parallel computing steps, Baseline achieves
large speedups over GPU. However, its performance decreases
proportionally as the fraction of execution time spent on
communication with the CPU increases, as shown in Figure 15.
The figure breaks down execution time into three components:
(1) MPU computation, (2) inter-MPU communication on-
chip, and (3) off-chip communication with an external CPU.
While the MPU configuration’s execution time only consists of
MPU computation and inter-MPU communication, the Baseline
configuration must spend additional time transferring data
between the CPU and the PUM datapath. For EditDistance,
in which almost all execution time is attributed to off-chip
communication, the cost of frequent CPU-PUM communication

13

[l MPU Compute [l Inter-MPU Comm. [J]] Off-Chip Comm.

G MPU EXECUTION ey |

LLMEncode
BlackScholes
EditDistance

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 15. Execution time breakdown for MPU vs. Baseline.

can make Baseline perform 7.72x worse than GPU. In contrast,
because there is no off-chip communication for MPU config-
urations, MPU:RACER/MPU:MIMDRAM achieve speedups
over GPU of 198x/229x and 400x/545x for LLMEncode
and EditDistance, respectively. The MPU configurations still
experience slowdowns with BlackScholes due to their exten-
sive use of CORDIC subroutines (implemented as software-
emulated subroutines), for which the GPU has significantly
faster dedicated hardware. Even then, the MPU improves over
Baseline by 2.50x for BlackScholes.

Second, Baseline can significantly undermine the energy
savings of PUM platforms, and in the case of BlackScholes
and EditDistance actually consumes more energy than GPU,
for both RACER and MIMDRAM datapaths. For BlackScholes,
the frequent CPU-PUM communication is attributed to its
complex computing steps, such as calculating the square
root, whereas EditDistance needs frequent communication due
to its complex 2D systolic patterns, which require frequent
synchronization between back-end arrays. Such frequent CPU-
PUM communication severely increases Baseline’s execution
time, and coupled with the fact that the external CPU generates
additional power for the system, results in orders of magnitude
higher energy consumption compared to the GPU and MPU
configurations. In contrast, MPU with RACER/MIMDRAM
achieves average energy savings of 5.4x/14.2x over GPU.

From these observations, we conclude that the MPU ISA
and its front-end hardware are effective solutions to enable
end-to-end application execution on different PUM platforms.

IX. MPU LIMITATIONS

Porting to Other Back Ends. We note that while the
MPU should work for most bitwise PUM architectures, it
currently does not adapt well to non-bitwise PUM approaches.
For example, works such as Liquid Silicon [103] treat the
memory as an FPGA, and allocate large connected strings
of hardware blocks in an ASIC-like manner. Such custom
hardware pipelines require custom front ends (as is the case for
FPGA datapaths today), which are difficult for an MPU-like
model to generalize efficiently. However, one could instantiate
a datapath on top of Liquid Silicon that is compatible with the
MPU ISA, facilitating MPU integration.

Beyond PUM, the MPU abstraction and front end are
compatible with any processing-in-memory (PIM) architecture
that presents a vector abstraction (e.g., CAPE [21]). Some PIM
architectures take different approaches to expose in-memory
operations to programmers: for example, GDDR6-AIM [43,

65] implements a custom front end that can support only matrix
multiplication, while UPMEM [26] presents a custom API for
its data processing units (DPUs). While it may not be efficient
to replace such front ends with the MPU, it could be possible
to extend the MPU with a meta-ISA that encompasses all of
these operations (e.g., encode matrix multiply operations as
multiply and accumulate micro-ops), and uses a lightweight
hardware/software coordination layer to enable concurrent
execution across heterogeneous types of PIM.

Completing Application Support. While the MPU can support
the end-to-end execution of applications, it still lacks a number
of important features that programmers expect in modern
architectures: precise exception handling, function calls, and
a true compiler toolchain. We believe that the MPU has
made each of these significantly more feasible, and expect
to implement all of these in our future work.

X. RELATED WORKS

To our knowledge, the MPU is the first PUM interface to
(1) abstract away microarchitectural details of PUM datapaths
with a common interface, (2) propose control logic that is
compatible with most bitwise PUM datapaths, and (3) enable
end-to-end program execution using in-PUM control flow. We
briefly discuss closely related works below.

PUM With Warp-Centric Execution Model. Duality
Cache [31] (DC) proposes an in-cache PUM microarchitecture
based on a warp-centric execution model. While the work
shows that it is possible to achieve significant speedup and
energy savings compared to CPU/GPU platforms, while being
able to program the platform using CUDA, there are three
key challenges in adopting this execution model to other PUM
works. First, DC can adopt the warp-centric model efficiently
because of its relatively smaller capacity compared to platforms
such as MIMDRAM and RACER. This allows DC to manage
the activations of its SRAM subarray for in-memory instructions
more effectively. Its smaller capacity effectively eliminates the
need for at-scale system-level features such as synchronization
and collective communication. Second, DC does not provide
any high-level abstractions (e.g., VRFs, RF holders) that allow
its execution model to integrate with other memory technology
and microarchitectural organizations. Third, DC’s front end
does not support complex control behavior, making it difficult
to run end-to-end applications.

System-Level Artifacts for PUM. Previous works propose
non-recipe-based instruction-to-micro-op (I2M) translation
routines [29, 96], with a compilation flow that identifies
and translates PUM-friendly code regions from high-level
representations [4, 27, 53, 90]. Many of these system-level
artifacts can work on top of the MPU ISA. For example,
abstractPIM [29] discusses translating a generic arithmetic
instruction into technology-specific micro-ops. The MPU can
make use of this translation flow to generate the micro-op
sequences of instructions that appear in a compute ensemble
and send them to the appropriate I12M decoders at the right
time. As another example, PIMFlow [90] describes how to

14

compile neural network graphs into processing-in-DRAM
instructions. PIMFlow can use the MPU ISA as an intermediate
representation to target other PUM memory technologies.

Digital PUM Datapaths. Prior works [28, 31, 40, 56, 64, 72,
78, 87, 95, 97, 98] have proposed various microarchitectural
designs to perform arithmetic operations in situ across different
memory technologies. While most offer a list of arithmetic
instructions and some basic control instructions that program-
mers can use, none offer a robust ISA design that programmers
can use to efficiently write scalable end-to-end applications.
Furthermore, they do not consider how the ISA design can be
applied to different PUM microarchitectures, which is essential
for the development of a PUM software stack whose lifetime is
not dependent on the success of any single microarchitectural
design. The MPU ISA offers a stable hardware foundation
through hardware abstractions that extend across many back-
end implementations. It further offers a first look at what the
control-path hardware should look like to efficiently support
the MPU ISA and its complex control instructions.

Analog PUM Datapaths. Prior works [2, 5, 10, 24, 45, 69, §9]
use resistive memory crossbars to perform in-memory analog
matrix—vector multiplies (MVMs). The limited capability of
these crossbars has restricted their use to matrix—multiply accel-
erators, primarily for machine learning. As these accelerators
are designed and optimized for specific application domains
with simple and highly regular operations, they do not require
a complex ISA and execution model. Hand-written libraries
and function calls are sufficient to leverage their abilities.

XI. CONCLUSION

Bitwise PUM platforms promise orders of magnitude
speedup and energy savings compared to traditional computing
platforms when executing data-intensive kernels. However,
without a capable front end on-chip and a robust ISA, it has
been challenging for these platforms to deliver their promised
performance and efficiency for whole applications. We intro-
duce the Memory Processing Unit (MPU), a microarchitecture-
agnostic PUM interface that eliminates the need for an external
CPU to handle complex control behaviors on behalf of the
PUM platforms. Our evaluations show that when the MPU
is used with the RACER, MIMDRAM, and Duality Cache
datapaths, it improve the programmability, performance, and
energy of control-heavy kernels and end-to-end applications.
The MPU enables programmers to write microarchitecture-
agnostic, end-to-end programs, establishing a foundation for
a PUM software stack and making it possible for existing
computing domains to adopt PUM in the future.

ACKNOWLEDGMENTS

This work was supported by the Univ. of Illinois Center for
Advanced Semiconductor Chips with Accelerated Performance
(ASAP; an NSF IUCRC), a grant from the Samsung Memory
Solutions Lab, the Data Storage Systems Center at Carnegie
Mellon Univ., the Univ. of Illinois DREMES HYBRID Center,
and NSF grant CCF-2329096. Minh Truong was supported by
an Apple Ph.D. Fellowship in Integrated Systems.

(1]

(2]
[3]

(4]

[5]

[6]
[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

REFERENCES

Advanced Micro Devices, Inc., “Samsung SmartSSD,”
https://www.xilinx.com/applications/data-center/computational-
storage/smartssd.html.

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute Caches,” in HPCA, 2017.

V. Agrawal, T. P. Xiao, C. H. Bennett, B. Feinberg, S. Shetty,
K. Ramkumar, H. Medu, K. Thekkekara, R. Chettuvetty, S. Leshner,
Z. Luzada, L. Hinh, T. Phan, M. J. Marinella, and S. Agarwal,
“Subthreshold Operation of SONOS Analog Memory to Enable Accurate
Low-Power Neural Network Inference,” in IEDM, 2022.

H. Ahmed, P. C. Santos, J. P. C. Lima, R. F. Moura, M. A. Z. Alves,
and A. C. S. Beck, “A Compiler for Automatic Selection of Suitable
Processing-in-Memory Instructions,” in DATE, 2019.

J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A
Low-Overhead, Locality-Aware Processing-in-Memory Architecture,”
in ISCA, 2015.

S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-Based
In-Memory Accelerator,” TCAD, May 2020.

S. Angizi, Z. He, and D. Fan, “PIMA-Logic: A Novel Processing-in-
Memory Architecture for Highly Flexible and Energy-Efficient Logic
Computation,” in DAC, 2018.

S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: An Energy-
Efficient Comparator-based Processing-in-Memory Neural Network
Accelerator,” in DAC, 2018.

S. Angizi, J. Sun, W. Zhang, and D. Fan, “AlignS: A Processing-
in-Memory Accelerator for DNA Short Read Alignment Leveraging
SOT-MRAM,” in DAC, 2019.

A. Ankit, I. El Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W. m. Hwu, J. P. Strachan, K. Roy, and D. S.
Milojicic, “PUMA: A Programmable Ultra-Efficient Memristor-Based
Accelerator for Machine Learning Inference,” in ASPLOS, 2019.
ARCANA Research Group, “RACER Artifacts — GitHub Repository,”
https://github.com/ARCANA-Research/RACER- Artifacts/, 2021.
ARCANA Research Group, “MASTODON — GitHub Repository,”
https://github.com/ARCANA-Research/MASTODONY/, 2026.

G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and
R. A. Stokes, “The ILLIAC IV Computer,” TC, Aug. 1968.

K. E. Batcher, “Bit-Serial Parallel Processing Systems,” 7C, 1982.

C. H. Bennett, T. P. Xiao, R. Dellana, B. Feinberg, S. Agarwal, M. J.
Marinella, V. Agrawal, V. Prabhakar, K. Ramkumar, L. Hinh, S. Saha,
V. Raghavan, and R. Chettuvetty, “Device-Aware Inference Operations
in SONOS Non-Volatile Memory Arrays,” in IRPS, 2020.

K. Bhanushali and W. R. Davis, “FreePDK15: An Open-Source
Predictive Process Design Kit for 15nm FinFET Technology,” in ISPD,
2015.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in PACT, 2008.
F. Black and M. Scholes, “The Pricing of Options and Corporate
Liabilities,” The Journal of Political Economy, May 1973.

J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive Switches Enable Stateful Logic Operations
via Material Implication,” Nature, Apr. 2010.

A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Raganathan, and O. Mutlu,
“Google Workloads for Consumer Devices: Mitigating Data Movement
Bottlenecks,” in ASPLOS, 2018.

H. Caminal, K. Yang, S. Srinivasa, A. K. Ramanathan, K. Al-Hawaj,
T. Wu, V. Narayanan, C. Batten, and J. F. Martinez, “CAPE: A Content-
Addressable Processing Engine,” in HPCA, 2021.

M. Cassinerio, N. Ciocchini, and D. Ielmini, “Logic Computation in
Phase Change Materials by Threshold and Memory Switching,” Adv.
Materials, Nov. 2013.

S. Chen, Y. Jiang, C. Delimitrou, and J. F. Martinez, “PIMCloud:
QoS-Aware Resource Management of Latency-Critical Applications in
Clouds With Processing-in-Memory,” in HPCA, 2022.

T. Chou, W. Tang, J. Botimer, and Z. Zhang, “CASCADE: Connecting
RRAMs to Extend Analog Dataflow in an End-to-End In-Memory
Processing Paradigm,” in MICRO, 2019.

W. J. Dally, “Challenges for Future Computing Systems,” keynote talk
at HIPEAC, 2015.

F. Devaux, “The True Processing in Memory Accelerator,” in HotChips,
2019.

A. Devic, S. B. Rai, A. Sivasubramaniam, A. Akel, S. Eilert, and J. Eno,
“To PIM or Not for Emerging General Purpose Processing in DDR
Memory Systems,” in ISCA, 2022.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. M.
Sylvester, D. T. Blaauw, and R. Das, “Neural Cache: Bit-Serial In-
Cache Acceleration of Deep Neural Networks,” in ISCA, 2018.

15

[29]

[30]
[31]
[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

A. Eliahu, R. Ben-Hur, R. Ronen, and S. Kvatinsky, “abstractPIM:
Bridging the Gap Between Processing-In-Memory Technology and
Instruction Set Architecture,” in VLSI-SOC, 2020.

M. J. Flynn, “Very High-Speed Computing Systems,” Proc. IEEE, Dec.
1966.

D. Fujiki, S. Mahlke, and R. Das, “Duality Cache for Data Parallel
Acceleration,” in ISCA, 2019.

P. Gaillardon, L. Amaru, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. D. Micheli, “The Programmable Logic-in-Memory (PLiM)
Computer,” in DATE, 2016.

C. Gao, X. Xin, Y. Lu, Y. Zhang, J. Yang, and J. Shu, “ParaBit:
Processing Parallel Bitwise Operations in NAND Flash Memory Based
SSDs,” in MICRO, 2021.

F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-
Memory Compute Using Off-the-Shelf DRAMs,” in MICRO, 2019.

F. Gao, G. Tziantzioulis, and D. Wentzlaff, “FracDRAM: Fractional
Values in Off-the-Shelf DRAM,” in MICRO, 2022.

S. Ghose, A. Boroumand, J. S. Kim, J. Gémez-Luna, and O. Mutlu,
“Processing-in-Memory: A Workload-Driven Perspective,” IBM JRD,
Nov.-Dec. 2019.

GSI Technology, Inc., “In-Place Associative Computing,” https://www.
gsitechnology.com/APU.

GSI Technology, Inc., “Gemini® APU: Enabling High Performance
Billion-Scale Similarity Search,” White Paper, 2020, https:
/Iwww.gsitechnology.com/sites/default/files/Whitepapers/GSIT- APU-
Enabling- High-Performance- Billion-Scale- Similarity-Search- WP.pdf.
S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and Energy-Efficient
Logic in Memory,” in ICCAD, 2018.

N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M.
Ghiasi, M. Patel, M. Alser, S. Ghose, J. Gomez-Luna, and O. Mutlu,
“SIMDRAM: A Framework for Bit-Serial SIMD Processing Using
DRAM,” in ASPLOS, 2021.

S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,
H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for Computing:
Myth or Reality?” in DATE, 2017.

S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels,
H. Corporaal, H. Jiao, F. Catthoor, D. Wouters, L. Eike, and J. van
Lunteren, “Memristor-Based Computation-in-Memory Architecture for
Data-Intensive Applications,” in DATE, 2015.

M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and
T. N. Vijaykumar, “Newton: A DRAM-Maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning,” in MICRO, 2020.

W. Huang, M. R. Stan, S. Gurumurthi, R. J. Ribando, and K. Skadron,
“Interaction of Scaling Trends in Processor Architecture and Cooling,”
in SEMI-THERM, 2010.

M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training With High Precision,”
in ISCA, 2019.

Intel Corp., “Intel Xeon Gold 6544Y,” https://www.intel.com/content/
www/us/en/products/sku/237569/intel-xeon- gold-6544y-processor-
45m-cache-3-60-ghz/specifications.html.

S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in Memory
With Spin-Transfer Torque Magnetic RAM,” TVLSI, Mar. 2018.

S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28nm
Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T
Bit Cell Enabling Logic-in-Memory,” in JSSC, 2016.

M. Kang, E. P. Kim, M.-S. Keel, and N. R. Shanbhag, “Energy-Efficient
and High Throughput Sparse Distributed Memory Architecture,” in
ISCAS, 2015.

L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J. Park, H. Park,
J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S. Lee, “Near-Memory
Processing in Action: Accelerating Personalized Recommendation With
AxDIMM,” IEEE Micro, 2021.

G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
Cost of Data Movement in Scientific Applications,” in IISWC, 2013.
R. Khaddam-Aljameh, M. Stanisavljevic, J. F. Mas, G. Karunaratne,
M. Braendli, F. Liu, A. Singh, S. M. Miiller, U. Egger, A. Petropoulos,
T. Antonakopoulos, K. Brew, S. Choi, I. Ok, F. L. Lie, N. Saulnier,
V. Chan, I. Ahsan, V. Narayanan, S. R. Nandakumar, M. L. Gallo, P. A.
Francese, A. Sebastian, and E. Eleftheriou, “HERMES Core — A 14nm
CMOS and PCM-Based In-Memory Compute Core Using an Array of
300ps/LSB Linearized CCO-Based ADCs and Local Digital Processing,”
in VLSIT, 2021.

A. A. Khan, H. Farzaneh, K. F. A. Friebel, C. Fournier, L. Chelini,
and J. Castrillon, “CINM (Cinnamon): A Compilation Infrastructure
for Heterogeneous Compute In-Memory and Compute Near-Memory
Paradigms,” in ASPLOS, 2024.

A. A. Khan, J. P. C. De Lima, H. Farzaneh, and J. Castrillon, “The
Landscape of Compute-Near-Memory and Compute-in-Memory: A
Research and Commercial Overview,” arXiv:2401.14428 [cs.AR], 2024.

https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://github.com/ARCANA-Research/RACER-Artifacts/
https://github.com/ARCANA-Research/MASTODON/
https://www.gsitechnology.com/APU
https://www.gsitechnology.com/APU
https://www.gsitechnology.com/sites/default/files/Whitepapers/GSIT-APU-Enabling-High-Performance-Billion-Scale-Similarity-Search-WP.pdf
https://www.gsitechnology.com/sites/default/files/Whitepapers/GSIT-APU-Enabling-High-Performance-Billion-Scale-Similarity-Search-WP.pdf
https://www.gsitechnology.com/sites/default/files/Whitepapers/GSIT-APU-Enabling-High-Performance-Billion-Scale-Similarity-Search-WP.pdf
https://www.intel.com/content/www/us/en/products/sku/237569/intel-xeon-gold-6544y-processor-45m-cache-3-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/237569/intel-xeon-gold-6544y-processor-45m-cache-3-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/237569/intel-xeon-gold-6544y-processor-45m-cache-3-60-ghz/specifications.html

[55]
[56]
[57]

[58]
[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]
[72]

[73]

[74]
[75]
[76]
[77]

[78]

Y. S. Ki, “Innovation With SmartSSD for Green Computing,” talk at
SNIA PMCS, 2022.

S. Kvatinsky, “Real Processing-in-Memory With Memristive Memory
Processing Unit (mMPU),” in ASAP, 2019.

S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC: Memristor-Aided Logic,” TCAS
11, Sep. 2014.

S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Memristor-
Based IMPLY Logic Design Procedure,” in /CCD, 2011.

S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-Based Material Implication (IMPLY) Logic: Design
Principles and Methodologies,” in VLSI, 2013.

Y. C. Kwon, S. H. Lee, J. Lee, S. H. Kwon, J. M. Ryu, J. P. Son, S. O,
H. S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H. S. Shin,
J. Kim, B. S. Phuah, H. M. Kim, M. J. Song, A. Choi, D. K. Y. Kim,
E. B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. H. Song, J. Youn,
K. Sohn, and N. S. Kim, “A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 With a 1.2TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

L. Lamport, “How to Make a Correct Multiprocess Program Execute
Correctly on a Multiprocessor,” TC, September 1979.

M. Le Gallo, R. Khaddam-Aljameh, M. Stanisavljevic, A. Vasilopoulos,
B. Kersting, M. Dazzi, G. Karunaratne, M. Brindli, A. Singh, S. M.
Miiller, J. Biichel, X. Timoneda, V. Joshi, M. J. Rasch, U. Egger,
A. Garofalo, A. Petropoulos, T. Antonakopoulos, K. Brew, S. Choi, I. Ok,
T. Philip, V. Chan, C. Silvestre, I. Ahsan, N. Saulnier, V. Narayanan,
P. A. Francese, E. Eleftheriou, and A. Sebastian, “A 64-Core Mixed-
Signal In-Memory Compute Chip Based on Phase-Change Memory for
Deep Neural Network Inference,” Nature Electronics, Aug. 2023.

D. Lee, J. So, M. Ahn, J.-G. Lee, J. Kim, J. Cho, R. Oliver, V. C.
Thummala, R. S. JV, S. S. Upadhya, M. 1. Khan, and J. H. Kim,
“Improving In-Memory Database Operations With Acceleration DIMM
(AXxDIMM),” in DaMoN, 2022.

S. Lee, S. Lee, M. Seo, C. Park, W. Shin, and H. Lee, “NPC: A
Non-Conflicting Processing-in-Memory Controller in DDR Memory
Systems,” in IEEE Access, 2024.

S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho, I. Kim,
C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and J. Cho, “A
lynm 1.25V 8Gb, 16Gb/s/Pin GDDR6-Based Accelerator-in-Memory
Supporting 1 TFLOPS MAC Operation and Various Activation Functions
for Deep-Learning Applications,” in ISSCC, 2022.

S. Lee, S. haeng Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn, and N. S.
Kim, “Hardware Architecture and Software Stack for PIM Based on
Commercial DRAM Technology,” in ISCA, 2021.

Y. Levy, J. Briuck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi,
and S. Kvatinsky, “Logic Operations in Memory Using a Memristive
Akers Array,” Microelectronics, Nov. 2014.

B. Li, L. Xia, P. Gu, Y. Wang, and H. Yang, “Merging the Interface:
Power, Area, and Accuracy Co-Optimization for RRAM Crossbar-Based
Mixed-Signal Computing System,” in DAC, 2015.

S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA:
A DRAM-Based Reconfigurable In-Situ Accelerator,” in MICRO, 2017.
S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
Processing-in-Memory Architecture for Bulk Bitwise Operations in
Emerging Non-Volatile Memories,” in DAC, 2016.

J. Louis, B. Hoffer, and S. Kvatinsky, “Performing Memristor-Aided
Logic (MAGIC) Using STT-MRAM,” in ICECS, 2019.

A. Mamdouh, H. Geng, M. Niemier, X. S. Hu, and D. Reis, “Shared-
PIM: Enabling Concurrent Computation and Data Flow for Faster
Processing-in-DRAM,” arXiv:2408.15489 [cs.AR], 2024.

O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun, “Enabling
Practical Processing in and Near Memory for Data-Intensive Computing,”
in DAC, 2019.

NVIDIA Corp., “cuBLAS: Basic Linear Algebra on NVIDIA GPUs,”
https://developer.nvidia.com/cublas/.

NVIDIA Corp., “GeForce RTX 4090,” https://www.nvidia.com/en-us/
geforce/graphics-cards/40-series/rtx-4090/.

NVIDIA Corp., CUDA Toolkit Documentation: Profiler User’s Guide,
2025, https://docs.nvidia.com/cuda/profiler-users-guide/.

G. F. Oliveira, L. O. J. Gomez-Luna, S. Ghose, N. Vijaykumar,
I. Fernandez, M. Sadrosadati, and O. Mutlu, “DAMOV: A New
Methodology and Benchmark Suite for Evaluating Data Movement
Bottlenecks,” IEEE Access, September 2021.

G. F. Oliveira, A. Olgun, A. G. Yaglik¢i, F. N. Bostanci, J. Gomez-Luna,
S. Ghose, and O. Mutlu, “MIMDRAM: An End-to-End Processing-
Using-DRAM System for High-Throughput, Energy-Efficient and

16

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]
[89]

[90]

[91]
[92]
[93]
[94]

[95]

[96]

[971

[98]

[99]
[100]
[101]
[102]
[103]
[104]

Programmer-Transparent Multiple-Instruction Multiple-Data Comput-
ing,” in HPCA, 2024.

S. Ollivier, S. Longofono, P. Dutta, J. Hu, S. Bhanja, and A. K. Jones,
“CORUSCANT: Fast Efficient Processing-in-Racetrack Memories,” in
MICRO, 2022.

J. Park, R. Azizi, G. FE. Oliveira, M. Sadrosadati, R. Nadig, D. Novo,
J. Gémez-Luna, M. Kim, and O. Mutlu, “Flash-Cosmos: In-Flash Bulk
Bitwise Operations Using Inherent Computation Capability of NAND
Flash Memory,” in MICRO, 2022.

M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, “Training and Operation of an Integrated
Neuromorphic Network Based on Metal-Oxide Memristors,” Nature,
May 2015.

A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and
B. Jacobs, “The Structural Simulation Toolkit,” in SIGMETRICS, 2011.
Samsung Electronics Co., Ltd., “HBM Processing in Mem-
ory,” https://www.samsung.com/semiconductor/solutions/technology/
hbm-processing-in-memory/.

Samsung Electronics Co., Ltd., “Samsung Electronics Develops Second-
Generation SmartSSD Computational Storage Drive With Upgraded
Processing Functionality,” https://news.samsung.com/global/samsung-
electronics-develops-second- generation-smartssd-computational-
storage-drive- with-upgraded-processing-functionality, July 2022.
Sandia National Laboratories, “The Structural Simulation Toolkit,” https:
//sst-simulator.org/.

D. Senol Cali, G. S. Kalsi, Z. Bingol, C. Firtina, L. Subramanian,
J. S. Kim, R. Ausavarungnirun, M. Alser, J. Gémez-Luna, Juan,
A. Boroumand, A. Nori, A. Scibisz, S. Subramoney, C. Alkan,
S. Ghose, and O. Mutlu, “GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework for Genome
Sequence Analysis,” in MICRO, 2020.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology,” in MICRO, 2017.

V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce
Data Movement,” in Advances in Computers, 2017, vol. 106.

A. Shafiee, A. Nag, M. N, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator With In-Situ Analog Arithmetic in Crossbars,” in
ISCA, 2016.

Y. Shin, J. Park, S. Cho, and H. Sung, “PIMFlow: Compiler and Runtime
Support for CNN Models on Processing-in-Memory DRAM,” in CGO,
2023.

L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A Pipelined ReRAM-
Basevd Accelerator f9r Deep Learning,” in HPCA, 2017.

M. Sosi¢ and M. Siki¢, “Edlib: A C/C++ Library for Fast, Exact
Sequence Alignment Using Edit Distance,” Bioinformatics, May 2017.

M. Sosi¢ and M. Siki¢, “Edlib,” 2024. [Online]. Available:
https://github.com/Martinsos/edlib/tree/master
Synopsys, Inc., Synopsys Design Compiler, 2024. [Online].

Available: https://www.synopsys.com/implementation-and-signoff/rtl-
synthesis-test/dc-ultra.html

N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky,
“mMPU—A Real Processing-in-Memory Architecture to Combat the von
Neumann Bottleneck,” in Applications of Emerging Memory Technology:
Beyond Storage, 2019.

C. Tang, C. Nie, W. Qian, and Z. He, “PIMLC: Logic Compiler for
Bit-Serial Based PIM,” in DATE, 2024.

M. S. Q. Truong, E. Chen, D. Su, A. Glass, L. Shen, L. R. Carley,
J. A. Bain, and S. Ghose, “RACER: Bit-Pipelined Processing Using
Resistive Memory,” in MICRO, 2021.

M. S. Q. Truong, L. Shen, A. Glass, A. Hoffmann, L. R. Carley, J. A.
Bain, and S. Ghose, “Adapting the RACER Architecture to Integrate
Improved In-ReRAM Logic Primitives,” JETCAS, 2022.

UPMEM SAS, “Technology,” https://www.upmem.com/technology/.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention Is All You Need,” in NIPS,
2017.

L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast Boolean Logic Mapped on Memristor Crossbar,” in /CCD, 2015.
J. Yu, H. A. D. Nguyen, L. Xie, M. Taouil, and S. Hamdioui,
“Memristive Devices for Computation-in-Memory,” in DATE, 2018.
Y. Zha and J. Li, “Liquid Silicon: A Data-Centric Reconfigurable
Architecture Enabled by RRAM Technology,” in FPGA, 2018.

Y. Zha and J. Li, “Liquid Silicon-Monona: A Reconfigurable Memory-
Oriented Computing Fabric With Scalable Multi-Context Support,” in
ASPLOS, 2018.

https://developer.nvidia.com/cublas/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://www.nvidia.com/en-us/geforce/graphics-cards/40-series/rtx-4090/
https://docs.nvidia.com/cuda/profiler-users-guide/
https://www.samsung.com/semiconductor/solutions/technology/hbm-processing-in-memory/
https://www.samsung.com/semiconductor/solutions/technology/hbm-processing-in-memory/
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://sst-simulator.org/
https://sst-simulator.org/
https://github.com/Martinsos/edlib/tree/master
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.upmem.com/technology/

	Introduction
	Background
	Existing Execution Models
	Enabling Bitwise PUM Micro-Ops
	Bitwise PUM Datapath Microarchitectures

	Memory Processing Unit: Overview
	Integrating the MPU With PUM Datapaths
	Writing an MPU Program
	Compute Ensembles
	Transfer Ensembles
	Simplifying Programming With ezpim

	MPU Control Path Hardware & Runtime
	Precoder
	Compute Controller
	Scheduling Algorithm & Hardware
	Data Transfer Controller

	Methodology
	Evaluation
	MPU Front End: Area & Power Analysis
	MPU Improvement Analysis
	Comparison With GPU
	End-to-End Application Analysis

	MPU Limitations
	Related Works
	Conclusion
	References

